heavy flavor baryons
play

Heavy-Flavor Baryons b (*) (at the Tevatron) c (*) , c * BR( b - PowerPoint PPT Presentation

Heavy-Flavor Baryons b (*) (at the Tevatron) c (*) , c * BR( b ) Thomas Kuhr Hadron2011 16.06.2011 Tevatron: pp @ 1.96 TeV Tevatron: pp @ s = 1.96 TeV Thomas Kuhr Hadron 2011, 16.06.2011 page 2 Tevatron Performance ~10 fb -1


  1. Heavy-Flavor Baryons Σ b (*) (at the Tevatron) Σ c (*) , Λ c * BR(Λ b ) Thomas Kuhr Hadron2011 16.06.2011

  2. Tevatron: pp @ 1.96 TeV Tevatron: pp @ √s = 1.96 TeV Thomas Kuhr Hadron 2011, 16.06.2011 page 2

  3. Tevatron Performance ~10 fb -1 recorded per experiment Thomas Kuhr Hadron 2011, 16.06.2011 page 3

  4. Heavy Flavor Production at the Tevatron b b g b g g q b b b q b g g g b q q ➔ Huge bb cross section ✗ Background tracks from fragmentation ➔ Production of all heavy hadron → High combinatorial species in fragmentation background but Belle CDF ✗ inelastic cross section ~10 3 times larger than σ( bb) → Trigger Thomas Kuhr Hadron 2011, 16.06.2011 page 4

  5. CDF and D0 Detectors CDF D0 ➔ Excellent mass resolution ➔ Large tracking and muon coverage ➔ Displaced track and ➔ Single + di-muon triggers di-muon triggers Thomas Kuhr Hadron 2011, 16.06.2011 page 5

  6. B Baryon History ✔ Λ b observation 1991, UA1, PLB 273, 540 ✔ Σ b (*) observation 2007, CDF, PRL 99, 202001 ✔ Ξ b observation (D0, CDF), 2007, D0, PRL 99, 052001, 2007, CDF, PRL 99, 052002 ✔ Ω b observation 2008, D0, PRL 101, 232002 2009, CDF, PRD 80, 072003 Thomas Kuhr Hadron 2011, 16.06.2011 page 6

  7. Current Knowledge Thomas Kuhr Hadron 2011, 16.06.2011 page 7

  8. Σ b (*) States ➢ Isospin triplets ● Strong decay to Λ b π via p-wave ➔ Charged states observable via decay chain:  Σ b (*)+ → Λ b 0 π +  Λ b 0 → Λ c + π –  Λ c + → p K – π + Thomas Kuhr Hadron 2011, 16.06.2011 page 8

  9. Σ b (*) Status ● First observed by CDF in 2007 with 1.1 fb -1 ● Significance of each peak ~ 3 σ ● Measurement of masses and hyperfine splitting: Motivation for update: ➢ Confirm observation ➢ Improve mass measurements ➢ Measure widths and isospin splitting Thomas Kuhr Hadron 2011, 16.06.2011 page 9

  10. Σ b (*) Trigger and Selection p ● Trigger on a pair of Λ c displaced tracks K Λ b Σ b (*) π π π ● Vertex fit (with mass constraint) for Λ c , Λ b , and Σ b (*) ● Selection cuts on  Decay time, impact parameter, momentum ➔ Optimized on S/√(S+B) of Λ b signal Thomas Kuhr Hadron 2011, 16.06.2011 page 10

  11. Σ b (*) Data Sample 6 fb -1 ➢ ~16k Λ b ● S/B ≈ 1.8 ➔ Real Λ b with random π Backgrounds: is dominant ● Combinatorial ● Partially or fully background reconstructed B for Σ b mesons and Λ b Thomas Kuhr Hadron 2011, 16.06.2011 page 11

  12. Σ b (*) Fit ➢ Fit of Q = M( Λ b π ) – M( Λ b ) – M( π ) Background: ● Second order polynomial times ● Square root function (for threshold) Signal: ● Non-relativistic Breit-Wigner ● With variable width Γ = Γ 0 (p π / p π, 0 ) 3 (for p-wave decay) ● Convolved with double-Gaussian resolution function determined from MC Thomas Kuhr Hadron 2011, 16.06.2011 page 12

  13. Σ b (*)– Mass Spectrum Significance: Comparison of  hypotheses for different numbers of peaks via Δ log(L) ➔ Two vs. one: 7.5 σ ➔ One vs. none: 10.0σ ➔ Two vs. none: 12.3σ Thomas Kuhr Hadron 2011, 16.06.2011 page 13

  14. Σ b (*)+ Mass Spectrum Significance: Comparison of  hypotheses for different numbers of peaks via Δ log(L) ➔ Two vs. one: 7.2 σ ➔ One vs. none: 12.2σ ➔ Two vs. none: 14.0σ Thomas Kuhr Hadron 2011, 16.06.2011 page 14

  15. Σ b (*) Results Talk by Igor Gorelov, tomorrow in Heavy Hadron session ● Systematics: momentum scale, resolution model, background model, fit bias, external input First Improved by measurements factor ≥ 2 Thomas Kuhr Hadron 2011, 16.06.2011 page 15

  16. Λ b → J/ ψ Λ ● Very little known about flavor physics processes in b baryons ➔ For example b → s transitions are sensitive to new physics ➢ Λ b → J/ ψ Λ CDF Run I measurement:  f(b → Λ b ) BR( Λ b → J/ ψ Λ ) = (4.7 ± 2.3 ± 0.2) x 10 -5 Thomas Kuhr Hadron 2011, 16.06.2011 page 16

  17. Λ b → J/ ψ Λ BR Measurement ● Trigger on muon pair or single muon ● Vertex fit for Λ , and Λ b ● Cascade decays like Σ → Λγ or Ξ 0 → Λπ 0 suppressed by requiring Λ vertex in Λ momentum direction ● Selection cuts on – Momentum, impact par., decay length ➔ Optimized on S/√(S+B) with S from MC and B from sidebands ➢ Normalized to B 0 → J/ ψ K S with K S → π + π – Thomas Kuhr Hadron 2011, 16.06.2011 page 17

  18. Λ b → J/ ψ Λ Fit 6.1 fb -1 ● Signal: double Gaussian ● Background: 2 nd order polynomial ● Relative efficiency from MC ● ε = 2.37 ± 0.05 (stat.) Thomas Kuhr Hadron 2011, 16.06.2011 page 18

  19. Λ b → J/ ψ Λ Result ● Systematic uncertainties: Fit model (5.6%), relative efficiency [B 0 decay model] (2.0%), cross-feed (2.3%), Λ b polarization (7.2%) ✔ Several cross-checks (sub-samples, data-MC comparisons) Factor ~3 improvement Submitted to PRD-RC arXiv:1105.0690 Thomas Kuhr Hadron 2011, 16.06.2011 page 19

  20. Charm Baryons ● Σ c (*) : Isospin triplets J P =1/2 + : Σ c (2455), J P =3/2 + : Σ c (2520) ● Λ c * : Λ c o rbital excitations J P =1/2 – : Λ c (2595), J P =3/2 – : Λ c (2625) Thomas Kuhr Hadron 2011, 16.06.2011 page 20

  21. Charm Baryons Trigger and Selection p ● Trigger on a pair of displaced tracks π Λ c ➔ ~50% from b hadron decays K Σ c (*) ● Selection of Λ c + → p K – π + Λ c * π Λ b π with Neural Network (NN) X ● Input variables: particle ID, decay time, decay angles, fit quality ➢ NN training on data only using sPlot technique Thomas Kuhr Hadron 2011, 16.06.2011 page 21

  22. Charm Baryons Data Sample 5.2 fb -1 Σ c (*) candidates: ➔ Λ c + one π Λ c * candidates: ➔ Λ c + two π ➢ Σ c (*) and Λ c * selection with NN trained on data (sPlot) Thomas Kuhr Hadron 2011, 16.06.2011 page 22

  23. Charm Baryon Spectra Λ c (2625) Σ c (2520) 0 Λ c (2595) Σ c (2455) 0 Fit of mass difference Σ c (*) : ΔM = M( Λ c π ) – M( Λ c )  Σ c (2520) ++ Λ c * : ΔM = M( Λ c ππ ) – M( Λ c )  Σ c (2455) ++ Thomas Kuhr Hadron 2011, 16.06.2011 page 23

  24. Σ c (*) Fit Signal: ● nonrelativistic Breit-Wigner convolved with triple Gaussian resolution function Background: ● Combinatorial: 2 nd order polynomial from Λ c sideband, Gaussian for D * reflection for Σ c (*) 0 case ● Λ c with random π: 3 rd order pol. ● Λ c (2625) → Λ c ππ feed down: derived from Λ c (2625) → Λ c ππ yield Thomas Kuhr Hadron 2011, 16.06.2011 page 24

  25. Σ c (*) Fit Projections Σ c (*) 0 → Λ c + π – Σ c (*) ++ → Λ c + π + Thomas Kuhr Hadron 2011, 16.06.2011 page 25

  26. Σ c (*) Results ● Systematic uncertainties: resolution model, mass scale, fit model WA w/o CDF ➢ Masses and widths consistent with world averages Thomas Kuhr Hadron 2011, 16.06.2011 page 26

  27. Λ c * Fit Signal: ● Threshold effect in Λ c *+ → Σ c 0,++ π +,– taken into account by mass dependent width ● Pion coupling constant h 2 Background: ● Combinatorial: 2 nd order polynomial from Λ c sidebands ● Λ c with random pions: 2 nd order polynomial ● Σ c with random pion: threshold function according to Σ c line shape Thomas Kuhr Hadron 2011, 16.06.2011 page 27

  28. Λ c (2625) Result ● Δ M (MeV/c 2 ) = 341.65 ± 0.04 ± 0.12 ● Γ (MeV/c 2 ) < 0.97 @ 90% CL (PDG: < 1.9) ➢ Significantly improved precision Thomas Kuhr Hadron 2011, 16.06.2011 page 28

  29. Λ c (2595) Threshold Effect ➢ Λ c line shape not described by normal Breit-Wigner  Increase of χ 2 from Fit w/o threshold 227 to 286 effect (for ndf=206) ➔ Discrepancy only observable because of high statistics ● Additional systematic uncertainty due to Σ c parameters Thomas Kuhr Hadron 2011, 16.06.2011 page 29

  30. Λ c (2595) Result ● Δ M = (305.79 ± 0.14 ± 0.20) MeV/c 2 ● h 2 2 = 0.36 ± 0.04 ± 0.07 ➢ Significantly improved precision Submitted to PRD arXiv:1105.5995 ➢ Predicted threshold effect confirmed ➔ Leads to significantly smaller mass Thomas Kuhr Hadron 2011, 16.06.2011 page 30

  31. Summary Factor ~2 improvement Expected improvements First measurement of width and in PDG tables isospin splitting Factor ~3 Factor ~3 improvement improvement Mass shift by threshold effect First direct h 2 measurement Thomas Kuhr Hadron 2011, 16.06.2011 page 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend