recent heavy flavor results from phenix
play

Recent Heavy Flavor Results from PHENIX Kazuya Nagashima - PowerPoint PPT Presentation

Recent Heavy Flavor Results from PHENIX Kazuya Nagashima (Hiroshima Univ. / RIKEN) Introduction of Heavy Flavor Probe Hadronization > produced in initial stage time - coalescence ( 0 = 1/2m c,b ) - fragment. > probe full time


  1. Recent Heavy Flavor Results from PHENIX Kazuya Nagashima (Hiroshima Univ. / RIKEN)

  2. ü Introduction of Heavy Flavor Probe Hadronization > produced in initial stage time - coalescence ( τ 0 = 1/2m c,b ) - fragment. > probe full time evolution B $ B % > conserved HF number ! b b QGP QGP dynamics - energy loss Generation - τ 0 = 1/2m c,b - flow and thermalization? - pQCD-NLO z Modification of phase space Au Au dist. reflects QGP dynamics! 2 K. Nagashima - QNP 2018 - Nov. 16, 2018

  3. ü Previous Heavy Flavor Measurement Nuclear modification factor of HF→e Azimuthal anisotropy v 2 of HF→e 0.18 2.2 2 AA 0-10% central. Au+Au, s =200 GeV Azimuthal anisotoropy v Nuclear modification factor R min. bias Au+Au, s =200 GeV NN NN 2 Phys.Rev.Lett.98,172301 0.16 Phys.Rev.Lett.98,172301 → → c+b e c+b e 1.8 0.14 (dAu, s =200 GeV) → NN c+b e 1.6 0.12 1.4 0.1 1.2 0.08 1 0.06 0.8 0.04 0.6 0.02 0.4 0 0.2 − 0.02 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 1 2 3 4 5 6 7 8 9 p [GeV/c] p [GeV/c] T T - Strong suppression in Au+Au - Large v 2 of HF→e in Au+Au - Large CNM in d+Au - v 2 of HF→e in d+Au? - Quark mass dependence? - Quark mass dependence? 3 K. Nagashima - QNP 2018 - Nov. 16, 2018

  4. ü Previous heavy flavor measurement Nuclear modification factor of HF→e Azimuthal anisotropy v 2 of HF→e 2.2 0.18 2 Azimuthal anisotoropy v 0-10% Au+Au, s =200 GeV PH ENIX min. bias Au+Au, s =200 GeV NN NN 2 preliminary Data 2004+2014, |y|<0.35 0.16 Phys.Rev.Lett.98,172301 → 1.8 c+b e (Phys.Rev.C 84,044905) 0.14 → → c e p+p from e-h correlations c+b e 1.6 e) Phys.Rev.Lett.105,202301 → 0.12 b e → 1.4 0.1 e, b 1.2 0.08 → 1 (c 0.06 0.8 AA 0.04 R 0.6 0.02 0.4 0 0.2 − 0.02 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 1 2 3 4 5 6 7 8 9 p [GeV/c] p [GeV/c] T T - Strong suppression in Au+Au - Large v 2 of HF→e in Au+Au - Large CNM in d+Au - v 2 of HF→e in d+Au? - Quark mass dependence? - Quark mass dependence? 4 K. Nagashima - QNP 2018 - Nov. 16, 2018

  5. ü Heavy Flavor Measurement at PHENIX [Mid-rapidity] [Forward-rapidity] electrons at Central arm muons at Muon arm (with RICH and EMCal) absorber: 7.2 X int φ = π, |η| = 0.35 φ = 2π, 1.2 < |η| < 2.2 e - e + μ - μ + [Collision systems] p+p, p+Al, p+Au, d+Au, 3 He+Au, AuAu, CuAu [Collision energies] 20 ~ 200 ~ 510 GeV/c 5 K. Nagashima - QNP 2018 - Nov. 16, 2018

  6. ü Silicon Vertex Detector @ PHENIX [VTX] - 2 pixel layers + 2 strip layers (σ φ = 14.4 μm) (σ φ = 23 μm) [FVTX] - 4 strip layers (σ φ = 75 μm) Displaced vertex analysis 6 K. Nagashima - QNP 2018 - Nov. 16, 2018

  7. Heavy Flavor Results in Small System (p+p) → production mechanism and baseline 7 K. Nagashima - QNP 2018 - Nov. 16, 2018

  8. ü Invariant Yield of c→e and b→e in p+p DCA T distribution Invariant yield of c→e and b→e 2 − 10 ] -2 dy) [mb (GeV/c) p+p at s = 200 GeV NN 3 − | | < 0.35 10 PH ENIX η preliminary 4 − 10 T /dp 5 − 10 σ 2 ) d 6 − 10 T p π (1/2 7 10 − 8 − 10 c e + b e → → 9 − 10 b e → c e → 10 Inclusive HF Electrons [PRC 84, 044905] − 10 2.4 1 2 3 4 5 6 7 8 9 e) 2.2 → 2 Data / (c+b 1.8 1.6 1.4 1.2 1 0.8 0.6 1 2 3 4 5 6 7 8 9 Electron p [GeV/c] T - Displaced vertex analysis for single electrons at mid-rapidity - Simultaneous fit to DCA T distribution and invariant yield - Unfold x-section of c, b hadrons, refold invariant yield of c, b→e 8 K. Nagashima - QNP 2018 - Nov. 16, 2018

  9. ! and # ̅ ü Production Mechanism of ! ̅ # Pair angle distribution is sensitive to production mechanism of HF Fit with 3 templates (from PYTHIA) Pair creation Flavor excitation Gluon splitting [ c% c production] > Flavor excitation dominates > Wider distribution than b% b → NLO process is higher [ b% b production] > Pair creation dominates 9 K. Nagashima - QNP 2018 - Nov. 16, 2018

  10. Heavy Flavor Results in Small System (d+Au) → Flow in Small System 10 K. Nagashima - QNP 2018 - Nov. 16, 2018

  11. ü Single muon measurement in d+Au - Single muons are measured at both Au-direction and d-direction. - 0-20% high-multiplicity events #$ analysis. are used for ! " - Main background sources: + hadron decay μ + punch thorough hadrons + J/ψ decay μ #$ is calculated by - ! " 1 #$ = )*+,. − 1 − ' /0 ×! " 23 ) ! " (! " ' #$ 11 K. Nagashima - QNP 2018 - Nov. 16, 2018

  12. ü Heavy Flavor Anisotropic Flow in d+Au Au-direction d-direction 0.3 0.3 0-20% d+Au s =200 GeV 0-20% d+Au s =200 GeV NN NN µ µ - - from open heavy flavor decays from open heavy flavor decays 0.25 0.25 } η η < -3.1 -2.0 < < -1.4 1.4 < < 2.0 0.2 0.2 Sys = 1.9% Sys = 1.9% Global Global η -3.9 < 0.15 0.15 {EP 0.1 0.1 2 v 0.05 0.05 PH ENIX preliminary 0 0 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 p [GeV/c] p [GeV/c] T T #$%→' in small collision system. Measured non-zero ! " - heavy flavor flows in small collision system? 12 K. Nagashima - QNP 2018 - Nov. 16, 2018

  13. ü Heavy Flavor Anisotropic Flow in d+Au Au-direction d-direction 0.3 0.3 0-20% d+Au s =200 GeV 0-20% d+Au s =200 GeV NN NN µ µ - - from open heavy flavor decays from open heavy flavor decays 0.25 0.25 Charged hadrons Charged hadrons } η η < -3.1 -2.0 < < -1.4 1.4 < < 2.0 0.2 0.2 Sys = 1.9% Sys = 1.9% Global Global η -3.9 < 0.15 0.15 {EP 0.1 0.1 2 v 0.05 0.05 PH ENIX preliminary 0 0 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 p [GeV/c] p [GeV/c] T T #$%→' in small collision system. Measured non-zero ! " - heavy flavor flows in small collision system? #$%→' ~ ! " ( (not direct comparison) - similar order of magnitude, ! " → One of the key to understand flow in small system 13 K. Nagashima - QNP 2018 - Nov. 16, 2018

  14. Heavy Flavor Results in Large System (Au+Au) → HF dynamics in QGP 14 K. Nagashima - QNP 2018 - Nov. 16, 2018

  15. ü Invariant Yield of c→e and b→e in Au+Au DCA T distribution Invariant yield − 2 10 4 10 Au+Au, s =200 GeV NN Data min. bias, |y|<0.35 → − c+b e (Data) 3 10 Data 2014 Background ] -2 3 [(GeV/c) − 4 10 10 [2.00-2.20 GeV/c] − b/(c+b)=0.31 5 10 counts 2 y 10 d − 6 10 T p N/d − 7 10 2 )d 10 T p − 8 10 π (1/2 − Au+Au, s =200 GeV 9 10 1 NN minimum bias, |y|<0.35 − stat 10 10 2 σ (Data - Re-fold)/ 2 Data/Re-fold 0 1 − 2 0 − − 0.1 0.05 0 0.05 0.1 1 2 3 4 5 6 7 8 9 e p [GeV/c] DCA [cm] T T - Displaced vertex analysis for single electrons at mid-rapidity - Simultaneous fit to DCA T distribution and invariant yield 15 K. Nagashima - QNP 2018 - Nov. 16, 2018

  16. ü Invariant Yield of c→e and b→e in Au+Au DCA T distribution Invariant yield − 2 10 4 10 Au+Au, s =200 GeV Data NN min. bias, |y|<0.35 → − c+b e (Data) 3 10 Re-fold Data 2014 ] → -2 Charm c+b e (Re-fold) 3 [(GeV/c) − 4 10 10 Bottom → [2.00-2.20 GeV/c] c e (Unfolded) − Background b/(c+b)=0.31 5 10 → counts b e (Unfolded) 2 y 10 d − 6 10 T p N/d − 7 10 2 )d 10 T p − 8 10 π (1/2 − Au+Au, s =200 GeV 9 10 1 NN minimum bias, |y|<0.35 − stat 10 10 2 σ (Data - Re-fold)/ 2 Data/Re-fold 0 1 − 2 0 − − 0.1 0.05 0 0.05 0.1 1 2 3 4 5 6 7 8 9 e p [GeV/c] DCA [cm] T T - Displaced vertex analysis for single electrons at mid-rapidity - Simultaneous fit to DCA T distribution and invariant yield - Unfold yield of c, b hadrons, refold invariant yield of c, b→e 16 K. Nagashima - QNP 2018 - Nov. 16, 2018

  17. ü Extraction of v 2 for c→e and b→e DCA T distribution 0.25 4 10 HF Au+Au, s =200 GeV Data Min. bias Au+Au s =200GeV NN 2 min. bias, |y|<0.35 e v NN Re-fold e v from open heavy flavor Data 2014 2 0.2 Charm 3 |DCA|<0.02 charm enriched 10 Bottom [2.00-2.20 GeV/c] 0.03<|DCA|<0.1 bottom enriched Background b/(c+b)=0.31 0.15 counts 2 10 0.1 10 0.05 1 0 stat 2 PH ENIX σ (Data - Re-fold)/ preliminary -0.05 0 1 1.5 2 2.5 3 3.5 4 4.5 5 p [GeV/c] − T 2 Extraction of c→e and b→e v 2 − − 0.1 0.05 0 0.05 0.1 DCA [cm] T # $%#& = ( # + ( + ×! " + + ( +, ×! " +, ! " # ×! " Divide DCA distribution to + $%#& = ( # + ( + ×! " + + ( +, ×! " +, c rich region : |DCA| < 200μm ! " # ×! " b rich region : 300 < |DCA| < 1000μm >> Solve simultaneous equations! 17 K. Nagashima - QNP 2018 - Nov. 16, 2018

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend