measurements of direct photons in au au collisions with
play

Measurements of direct photons in Au + Au collisions with PHENIX - PowerPoint PPT Presentation

Measurements of direct photons in Au + Au collisions with PHENIX Hard Probes 2013 Benjamin Bannier for the PHENIX collaboration Stony Brook University November 5, 2013 1 / 19 Outline Low momentum direct photons: 0 . 4 GeV / c < p T < 5 .


  1. Measurements of direct photons in Au + Au collisions with PHENIX Hard Probes 2013 Benjamin Bannier for the PHENIX collaboration Stony Brook University November 5, 2013 1 / 19

  2. Outline Low momentum direct photons: 0 . 4 GeV / c < p T < 5 . 0 GeV / c How are low momentum real photons measured in PHENIX? Spectra and centrality dependence of the low momentum real photons from RHIC 2 / 19

  3. Low momentum direct photons ◮ long mean free path, escape heavy ion collision with almost no final state interaction ◮ produced at all stages of the collision in scatterings of constituents of each other or the medium ◮ probe complete temperature and flow evolution of the collision ◮ experimentally characterized by momentum-dependent yields and angular correlations with event planes 3 / 19

  4. Low momentum direct photons (experiment) 0 BBC 0.25 π v ( Φ ) (a) 0.25 (b) 2 2 dir. BBC γ v ( Φ ) inc. BBC 2 2 γ v ( Φ ) 0.2 2 2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 Min. Bias -0.05 -0.05 0 2 4 6 8 10 12 0 2 4 6 8 10 12 (c) (d) 0.25 0.25 2 0.6 fm/c v 0.2 0.2 0.4 fm/c dir. 0.15 0.15 γ , inc. 0.1 0.1 γ 0.05 0.05 , 0 π 0 0 0~20 [%] -0.05 -0.05 0 2 4 6 8 10 12 0 2 4 6 8 10 12 (e) (f) 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 20~40 [%] -0.05 -0.05 0 2 4 6 8 10 12 0 2 4 6 8 10 12 p [GeV/c] T (a) PRL 104, 132301 (2010) (b) PRL 109, 122302 (2012) 4 / 19

  5. Low p T photons via external conversions in PHENIX � ε f � N γ incl. Y γ N γ π 0 incl. R γ = = Y γ Y γ hadron hadron Y γ π 0 Requirements: ◮ clean photon sample ◮ high π 0 -tagging efficiency � ε f � Photon sample ◮ measurement of low momentum photons in electromagnetic calorimeters is difficult due to e.g. MIPs ◮ PHENIX has good electron reconstruction capability down to p T = 200 MeV/c ◮ reconstruct real photons down to 400 MeV/c from e + e − pairs → no hadron contamination 5 / 19

  6. + - FG e e Pairs from Data 0.03 [GeV] 600 0.025 atm 500 M 0.02 400 0.015 300 0.01 200 0.005 100 0 0 0 0.005 0.01 0.015 0.02 0.025 0.03 M [GeV] cgl ◮ momentum can be reconstructed assuming production at the nominal event vertex or a defined radius ◮ conversion pairs can be selected through their invariant mass under hypotheses for production radius N γ incl. = Y γ incl. p conv a e + e − ε e + e − 6 / 19

  7. + - FG e e Pairs from Data 0.03 [GeV] 600 0.025 atm 500 M 0.02 400 0.015 300 0.01 200 0.005 100 0 0 0 0.005 0.01 0.015 0.02 0.025 0.03 M [GeV] cgl ◮ momentum can be reconstructed assuming production at the nominal event vertex or a defined radius ◮ conversion pairs can be selected through their invariant mass under hypotheses for production radius N γ incl. = Y γ incl. p conv a e + e − ε e + e − 7 / 19

  8. π 0 -decay photon tagging ◮ a second photon measured with very loose cuts in the calorimeter is paired with converted photons ◮ the combinatorial background is modelled with a mixed-event sample of uncorrelated converted and calorimeter photons N γ π 0 = Y γ π 0 p conv a e + e − ε e + e − × � ε f � (a) p T ,γ = 0 . 8 − 1 . 0 GeV/c (b) p T ,γ = 2 . 0 − 2 . 5 GeV/c 8 / 19

  9. Tagging efficiency correction � ε f � ◮ 2nd photon in acceptance → ε ◮ 2nd photon lost → f , The tagging efficiency � ε f � is calculated in a Monte Carlo simulation. ◮ f can be calculated accurately, ε ≈ 90% N γ Y γ Y γ incl. p conv a e + e − ε e + e − incl. incl. = π 0 p conv a e + e − ε e + e − × � ε f � = N γ Y γ Y γ π 0 � ε f � π 0 9 / 19

  10. R γ in Au + Au at √ s NN = 200 GeV (a) (b) 1.6 1.4 R γ 1.2 1.0 0-20% 20-40% (c) (d) PRL 104, 132301 PH ENIX 1.6 preliminary 2007 1.4 2010 1.2 1.0 Au+Au √ s NN = 200GeV 40-60% 60-92% 1 2 3 4 1 2 3 4 p T [ GeV / c ] Figure: R γ from virtual and real photons (red, blue) in 0-20%, 20-40%, 40-60% and 60-92% more central collisions. 10 / 19

  11. Direct photon p T spectrum d p T d y [( GeV / c ) − 2 ] (a) (b) 10 1 10 0 Au+Au √ s NN = 200GeV 10 − 1 10 − 2 10 − 3 d 2 N 10 − 4 10 − 5 2 π p T 0-20% 20-40% 1 10 − 6 (c) (d) 10 1 T AA -scaled pp fit PH ENIX 10 0 preliminary 2007, 2010 10 − 1 PRL 104, 132301 10 − 2 10 − 3 10 − 4 10 − 5 40-60% 60-92% 10 − 6 0 1 2 3 4 1 2 3 4 5 p T [ GeV / c ] Figure: Direct photon p T spectra Y γ = ( R γ − 1) Y hadron in 0-20%, γ 20-40%, 40-60% and 60-92% more central collisions. A N coll -scaled fit � − c to RHIC pp data is shown in green. � 1 + p 2 a T / b 11 / 19

  12. Excess photon p T spectrum d p T d y [( GeV / c ) − 2 ] (a) (b) T eff = ( 237 ± 25 ± 29 ) MeV / c T eff = ( 260 ± 33 ± 31 ) MeV / c 10 1 10 0 Au+Au √ s NN = 200GeV 10 − 1 10 − 2 10 − 3 d 2 N 10 − 4 10 − 5 2 π p T 0-20% 20-40% 1 10 − 6 (c) (d) T eff = ( 228 ± 28 ± 27 ) MeV / c T eff = ( 254 ± 53 ± 25 ) MeV / c 10 1 Ae − p T / T eff PH ENIX 10 0 data - scaled p + p preliminary 10 − 1 10 − 2 10 − 3 10 − 4 10 − 5 40-60% 60-92% 10 − 6 0 1 2 3 4 1 2 3 4 5 p T [ GeV / c ] Figure: Excess photon p T spectra after subtraction of hard-scattering component in 0-20%, 20-40%, 40-60% and 60-92% more central collisions. Red lines are fits of Ae − p T / T eff in p T = 0 . 6 − 2 . 0 GeV/c. 12 / 19

  13. Centrality dependence of excess photon yield 10 1 PH ENIX preliminary 10 − 3 10 0 d y / N 1 . 48 part d N d y 10 − 1 d N 10 − 4 10 − 2 p T > 0 . 4GeV / c p T > 1 . 0GeV / c p T > 0 . 6GeV / c p T > 1 . 2GeV / c PH ENIX Au+Au √ s NN = 200GeV p T > 0 . 8GeV / c p T > 1 . 4GeV / c preliminary 10 − 3 10 − 5 10 1 10 2 10 1 10 2 N part N part Figure: Left : Integrated excess photon yield as a function of Glauber N part . Right: Residuals of fits to power laws AN x part with x = 1 . 48 ± 0 . 08(stat) ± 0 . 04(sys). 5 GeV / c d 2 N � � d N � 1 2 π p ( i ) T ∆ p ( i ) � � d y ( p T ) = � T 2 π p T d p T d y p ( i ) � p ( i ) T T = p T 13 / 19

  14. Summary We have measured R γ and p T spectra for real photons. Real and virtual photons show similar R γ . An excess yield of photons is seen across all centralities. No change in the shape of the photon p T spectra is seen between centralities outside uncertainties. The excess photon yield grows stronger than N part in the p T window 0 . 6 − 2 . 0GeV / c and is described by a power law with x = 1 . 48 ± 0 . 08(stat) ± 0 . 04(sys). 14 / 19

  15. Backup 15 / 19

  16. Characterization of excess photon p T spectra Excess photon spectra are roughly exponential in low p T range. The shape of the spectra doesn’t change outside uncertainties across centralities. 0-20% 20-40% 40-60% 60-92% [ T eff ] 237 ± 25 ± 29 260 ± 33 ± 31 228 ± 28 ± 27 254 ± 53 ± 25 MeV/c Integrated yields To quantify the centrality-dependence of the yield we can calculate 5 GeV / c d 2 N d N � 1 � � 2 π p ( i ) T ∆ p ( i ) � � d y ( p T ) = � T 2 π p T d p T d y p ( i ) � p ( i ) T T = p T 16 / 19

  17. 1 . 5 4 1 . 0 2 (spectrum - fit)/fit (spectrum - fit)/fit 0 . 5 0 0 . 0 − 0 . 5 − 2 0-20% 0-20% 20-40% 20-40% − 1 . 0 40-60% 40-60% PH ENIX PH ENIX − 4 60-92% preliminary preliminary 60-92% − 1 . 5 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 p T [ GeV / c ] p T [ GeV / c ] Figure: Normalized fit residuals for fits of the excess photon spectra to an exponential in p T = 0 . 6 . . . 2 . 0 GeV/c ( left ) and zoomed ( right ). 17 / 19

  18. Hadron decay photon simulation To calculate R γ the efficiency-corrected ratio needs to be scaled by the expected ratio of photons yields from hadron and π 0 decays Y γ hadron / Y γ π 0 . We implement a cocktail including ◮ π 0 → γγ ◮ η → γγ , π + π − γ ◮ η ′ → γγ , π + π − γ , ωγ ◮ ω → π 0 γ using experimental π p T spectra and m T scaling for other mesons with experimental meson/ π 0 ratios. 18 / 19

  19. (a) (b) 1.6 1.4 R γ 1.2 1.0 0-20% 20-40% (c) (d) PRL 104, 132301 PH ENIX 1.6 preliminary 2007+2010 1.4 1.2 1.0 Au+Au √ s NN = 200GeV 40-60% 60-92% 1 2 3 4 1 2 3 4 p T [ GeV / c ] Figure: R γ from virtual and real photons in 0-20%, 20-40%, 40-60% and 60-92% more central collisions. 19 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend