orientifold abjm matrix model chiral projections and
play

Orientifold ABJM Matrix Model: ! Chiral Projections and Worldsheet - PowerPoint PPT Presentation

Orientifold ABJM Matrix Model: ! Chiral Projections and Worldsheet Instantons Tomoki Nosaka (KIAS) Based on: [Moriyama-TN, 1603.00615] August 8, YITP Workshop Strings and Fields 2016 Introduction


  1. Orientifold ABJM Matrix Model: ! Chiral Projections and Worldsheet Instantons Tomoki Nosaka (KIAS) Based on: [Moriyama-TN, 1603.00615] August 8, YITP Workshop “Strings and Fields 2016”

  2. Introduction Par,,on#func,on#of#ABJ(M)#theory#is#corrected#by#nonDperturba,ve# 7 effect#in#1/ N ,#which#correspond#to#closed#M2s#winding#on#S##/Z k =instantons S 7 S 7 3 M2#on#RP 3 M2#on#S##/Z AdS 4 k AdS 4 An#mysterious#rela,on#between#instanton#effects#and# 1#######1 refined&topological&string #on#local#P###x#P####was#found: [HatsudaDMarinoDMoriyamaDOkuyama][HondaDOkuyama] Z i ∞ In#grand#poten,al# J ( μ ), dµ 2 π ie J − µN Z U ( N ) k × U ( N + M ) − k = − i ∞ J ( µ ) = C 3 µ 3 e ff + Bµ e ff + A + O ( e − µ eff ) J np ( µ e ff ) − 2 sin π ns L g s 2 sin π ns R ∞ ∞ ( − 1) nd g (2 sin π g s ) 2 g − 2 e − n d · T eff + ∂ n d · T eff g s X X X n d N d = e − g s gs j L ,j R 2 π n 2 (2 sin π n g s ) 3 ∂ g s n n, d g =0 n, d ,j L ,j R g s = 2 T e ff = 4 µ e ff ⇣ 1 2 − M with :#Kahler#parameters ⌘ ± 2 π i k k k

  3. Does relation exist for more general backgrounds? N ##D3s 1 U( N%% )###xU( N%% ) (ABJ(M)): 1## k ############2#D k AdS 4 × S 7 / Z k N ##D3s [AharonyDBergmanDJafferisDMaldacena]# (1, k )5 NS5 2 [AharonyDBergmanDJafferis]# [HosomichiDLeeDLeeDLeeDPark] O3#plane · · · AdS 4 × S 7 / ( Z q , Z p , Z k ) AdS 4 × S 7 / b D k [ImamuraDKimura][TerashimaDYagi] [ABJ,HLLLP] new&35cycles&=&new&instantons J np ( µ e ff ) − 2 sin π ns L g s 2 sin π ns R ∞ ∞ ( − 1) nd g (2 sin π g s ) 2 g − 2 e − n d · T eff + ∂ n d · T eff g s X X X n d N d = e − g s gs j L ,j R 2 π n 2 (2 sin π n g s ) 3 ∂ g s n g =0 n, d n, d ,j L ,j R Q:#How#can#we# extend&this&structure #for#general#theories?

  4. To do: exactly solve “next-simplest model” Par,,on#func,on#of#these#theories#allow#Fermi#gas#formalism J ( µ ) ∼ Tr log(1 + e µ b ρ ) ⇣ ⌘ 1 1 :#density#operator#of#some#1d#QM ρ = e − b H b b ρ ABJM = b b Q P 2 cosh 2 cosh 2 2 powerful,#but#not#enough#for#finite# k q D1################################### p D1 U( N%% )###xU( N%% )###xU( N%%%%% )####xU( N%% ) 1## k% ############i##0###########q+1#D k #############j##0 1 1 ○## N ##= N ##=…= N→ :#natural#generalisa,on#of# b 1######2 ρ = b ρ ABJM b b Q P 2 ) p 2 ) q (2 cosh (2 cosh ○##Solved#only#for#(i)# q = p =2,# N ##= N #and#(ii)#orbifold#ABJ(M) a [HondaDMoriyama] [MoriyamaDTN]# [HatsudaDHondaDOkuyama] N N N 2 N 1 N 1 N 2 N 2 N 1 N N ○##General#rank##{ N ##}##is#difficult… a

  5. To do: exactly solve “next-simplest model” Par,,on#func,on#of#these#theories#allow#Fermi#gas#formalism J ( µ ) ∼ Tr log(1 + e µ b ρ ) ⇣ ⌘ 1 1 :#density#operator#of#some#1d#QM ρ = e − b H b b ρ ABJM = b b Q P 2 cosh 2 cosh 2 2 powerful,#but#not#enough#for#finite# k This#talk:####O( N%% )###xUSp(2 N%% ) 1## k ###################2##D k /2 ○##Next#largest#SUSY O3#plane ( N = 5) ○ looks#different#from … b b ρ ρ ABJM (due#to#different in#localiza,on#computa,on) Z 1-loop

  6. Recent developments in model O × USp ○ ρ OSp can#be#rewriken#as# chiral&projec9on #of b b ρ ABJM ρ U × U · 1 ± b R ( b R : | Q i ! | � Q i ) ρ O × USp = b b 2 [Honda,1512][Okuyama,1601][MoriyamaDSuyama,1601][MoriyamaDTN,1603] ○##Instantons O ( e − 4 µ/k ) , O ( e − 2 µ ) are# generated #from#those#in#ABJM# [MoriyamaDTN,1603] ○##Instantons#on#new#cycle O ( e − µ ) were#determined#for k ∈ N [Okuyama,1601][MoriyamaDSuyama,1601] Instantons#in#O( N%% )###xUSp(2 N%% )########were#completely#determined#! 1## k ####################2##D k /2

  7. ~ ~ ~ ~ ~ O × USp theories (NSNS,RR) D3#charge G (0,0) O(2 N ) D1/4 O3D O(2 N +1) (0,1/2) O3D (1/2,0) +1/4 O3+ USp(2 N ) (1/2,1/2) (O3D#=#1/2#D3#on#O3D) O3+ (1, k )/2#5 O3D 1/2#NS5 (1, k )/2#5 1/2#NS5 O3D O3+ O3+ O(2 N )###xUSp(2 N +2 M ) O(2 N +1)###xUSp(2 N +2 M ) k ###############################D k /2 k%%%%%%%%%% #####################D k /2 O(2 N +2 M )###xUSp(2 N ) O(2 N +2 M +1)###xUSp(2 N ) k #####################D k /2 k%%%%%%%%%% ###########D k /2 AdS 4 × S 7 / b D k with 2 π i 2 π i 2 π i 2 π i b Z k : ( z 1 , z 2 , z 3 , z 4 ) → ( e k z 4 ) D k = ( Z k , r ) k z 1 , e k z 2 , e k z 3 , e r : ( z 1 , z 2 , z 3 , z 4 ) → ( iz ∗ 2 , − iz ∗ 1 , iz ∗ 4 , − iz ∗ 3 )

  8. J ( µ ) Large μ contributions to for O × USp Z i ∞ dµ 2 π ie J ( µ ) − µN | Z ( N ) | = − i ∞ ○##Large# N #expansion#of#Z( N ) Large######expansion#of J ( µ ) µ µ 3 √ ○ kN ∼ R 3 J ( µ ) = 3 π 2 k + · · · + O ( e − µ ) ( µ ∼ AdS ) ⊂ S 7 / b :#closed#M2s#winding#on#3Dcycle D k (instanton) √ kN 3 / 2 log Z ∼ − 2 π α ` ( µ ) e − 4 ` µ S 3 / Z k ⊂ S 7 / b 3 D k k (leading#in#4d#SUGRA) β ` ( µ ) e − 2 ` µ RP 3 ⊂ S 7 / b D k γ ` ( µ ) e − ` µ RP 3 0 /r ⊂ S 7 / b D k r ∈ b D k : ( z 1 , z 2 , z 3 , z 4 ) → ( iz ∗ 2 , − iz ∗ 1 , iz ∗ 4 , − iz ∗ 3 ) Goal:#to#determine#perturba,ve#part#and#instanton#coefficients

  9. + ー ー ー b R : | Q i ! | � Q i Hint 1: O3 = chiral projection for ○##Recently#we#found#simple#rela,on#between b ρ ρ U × U · 1 ± b R ρ O × USp = b b 2 O(2N+1)xUSp(2N+2M) U(N)xU(N+2M) [Honda][Moriyama-Suyama] O(2N+2M+1)xUSp(2N) U(N+2M)xU(N) O(2N)xUSp(2N+2M) U(N)xU(N+2M+1) [Moriyama-TN] O(2N+2M)xUSp(2N) U(N+2MD1)xU(N) ○##Consistent#with#HananyDWiken’s# s Drules#and#duality � � ± and#denote J ± ( µ ) = Σ ( µ ) ± ∆ ( µ ) ○##Let#us#consider# b ρ U ( N ) × U ( N + M ) 2

  10. Hint 2: Total vs Modified grand potential Z π i dµ J ( µ ) = e e X J ( µ ) − µN e µN | Z ( N ) | | Z ( N ) | = e 2 π ie − π i N ≥ 0 ○##Total#grand#poten,al###########is#given#by e J ( µ ) = det(1 + e µ b e J ( µ ) ρ ) e ○##For#large# N #expansion#it#is#more#convenient#to#rewrite Z i ∞ dµ 2 π ie J ( µ ) − µN | Z ( N ) | = − i ∞ ○##Modified#grand#poten,al###########differs#from##########by#“oscilla,ons” e J ( µ ) J ( µ ) h e J ( µ +2 π in ) � J ( µ ) i X e e J ( µ ) = X e J ( µ +2 π in ) J ( µ ) = J ( µ ) + log 1 + e n 6 =0 n ∈ Z

  11. Perturbative & O ( e − µ ) in Σ ( µ ) det(1 + e µ b ρ + ) det(1 + e µ b ρ − ) = det(1 + e µ b ρ ) = = = e e e J + ( µ ) J U × U ( µ ) J − ( µ ) e e e In#modified#grand#poten,al, J + + J − = J U × U + ( oscillations ) J = � µ 3 + · · · k h e J ( µ +2 π i ) � J ( µ ) i X = O ( e − µ/k ) J osc = log 1 + n 6 =0 Σ pert ( µ ) = J pert = C 3 µ 3 e ff + Bµ e ff + A − 2 sin π ns L g s 2 sin π ns R ∂ n d · T eff g s X N d Σ MB ( µ ) = J MB e − U × U = g s gs j L ,j R 2 π n 2 (2 sin π n g s ) 3 ∂ g s n, d ,j L ,j R

  12. ∆ ( µ ) = perturbative + half instantons e ○##No#direct#rela,on#to#unprojected#grand#poten,al J U × U ( µ ) , J U × U ( µ ) ○##S,ll#we#can#compute#small#k#expansion# #####and#exact#values#of#leading#instanton#coefficients#for#a#few#k’s Whole#structure#for#general#( k , M )#was#guessed#as 1 ∆ ( µ ) = µ 2 + A 0 + X γ ` e � ` µ ` =1 ex.# M =0: √ 2 e − µ + 4 e − 2 µ 8 1 4 log 1 + 2 ( k ≡ 1 , 7 mod 8) > √ > 2 e − µ + 4 e − 2 µ > 1 − 2 > > √ 2 e − µ + 4 e − 2 µ > − 1 4 log 1 + 2 > > > ( k ≡ 3 , 5 mod 8) γ ` e − ` µ = < √ X 2 e − µ + 4 e − 2 µ 1 − 2 [Moriyama-Suyama] 1 [Okuyama] > ` 4 log(1 + 16 e − 2 µ ) ( k ≡ 2 , 6 mod 8) > > > > > 1 > > 2 log(1 + 4 e − µ ) ( k ≡ 0 mod 8) > :

  13. O ( e − µ/k ) Σ ( µ ) Worldsheet instantons in X X e J + ( µ +2 π in + ) X e J U × U ( µ +2 π in ) = e J − ( µ +2 π in − ) n n + n − J ± ( µ ) = Σ ( µ ) ± ∆ ( µ ) ⇣ ⌘ 2 ○##Special#simplifica,on#for e ∆ ( µ +2 π in + ) − ∆ ( µ +2 π in − ) = i n + − n − n − m n X X = +(( n + − n − ): odd) n ± = n ± m n + ,n − m,n no#contribu,on n + e J U × U ( µ ) = Σ ( µ +2 π im ) + Σ ( µ − 2 π im ) X − Σ ( µ ) ( − 1) m e 2 2 m [Moriyama-TN] :#Direct#rela,on#between#worldsheet#instanton#coefficients

  14. New “Gopakumar-Vafa invariants” " i# ∞ h Σ ( µ + 2 π im ) + Σ ( µ − 2 π im ) ( − 1) m exp X J U ( N ) × U ( N ) ( µ ) = Σ ( µ ) + log 1 + 2 − Σ ( µ ) 2 m =1 ∞ ∞ ( − 1) nd 2 sin 2 π ⌘ 2 g − 2 ⇣ e − 4 n d · µ X X J WS n d U ( N ) × U ( N ) ( µ ) = k g n k g =0 n, d 1 1 ( − 1) nd 2 sin 2 π ⌘ 2 g � 2 ⇣ e � 4 n d · µ X X Σ WS ( µ ) = 2 n 0 d k g n k g =0 n, d (0,1) (1,1) (1,2) (1,3) (2,2) (1,4) (2,3) d (0,1) (1,1) (1,2) (1,3) (2,2) (1,4) (2,3) d n 0 d − 1 − 2 − 3 − 4 − 16 − 5 − 55 n d − 2 − 4 − 6 − 8 − 32 − 10 − 110 0 0 n 0 d 0 1 4 10 53 20 318 n d 0 0 0 0 9 0 68 1 1 n 0 d 0 0 − 1 − 6 − 64 − 21 − 757 n d 0 0 0 0 0 0 − 12 2 2 n 0 d 0 0 0 1 37 8 1002 n d 0 0 0 0 0 0 0 3 3 n 0 d 0 0 0 0 − 10 − 1 − 792 4 n 0 d 0 0 0 0 1 0 378 1######1 5 :#GV#invariants#for#local#P##x#P n 0 d 0 0 0 0 0 0 − 106 6 n 0 d 0 0 0 0 0 0 16 7 n 0 d 0 0 0 0 0 0 − 1 8 polynomial#(nonDlinear)#of# n d g :#? n 0 d g =

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend