probe branes on flavored abjm background
play

PROBE BRANES ON FLAVORED ABJM BACKGROUND Javier Mas Universidad de - PowerPoint PPT Presentation

PROBE BRANES ON FLAVORED ABJM BACKGROUND Javier Mas Universidad de Santiago de Compostela Heraklion June 2013 Niko Jokela, J. M., Alfonso V. Ramallo & Dimitrios Zoakos arXiv: 1211.0630 based on Eduardo Conde & Alfonso V. Ramallo


  1. PROBE BRANES ON FLAVORED ABJM BACKGROUND Javier Mas Universidad de Santiago de Compostela Heraklion June 2013 Niko Jokela, J. M., Alfonso V. Ramallo & Dimitrios Zoakos arXiv: 1211.0630 based on Eduardo Conde & Alfonso V. Ramallo 1105.6045

  2. PLAN OF THE TALK • The ABJM theory • The flavored ABJM background • Probes on the flavored ABJM background • The flavored thermal ABJM background • Probes on the flavored thermal ABJM background • Conclusions

  3. • The ABJM theory • The flavored ABJM background • Probes on the flavored ABJM background • The flavored thermal ABJM background • Probes on the flavored thermal ABJM background • Conclusions

  4. The ABJM theory field theory Chern-Simons-matter theories in 2+1 dimensions gauge group: U ( N ) k × U ( N ) − k -Two gauge fields A µ , ˆ field content (bosonic) A µ -Four complex scalar fields: C I ( I = 1 , · · · , 4) bifundamentals ( N, ¯ N ) A ] − k D µ C I † D µ C I − V pot ( C ) S = k CS [ A ] − k CS [ ˆ action V pot ( C ) → sextic scalar potential Aharony, Bergman, Jafferis & Maldacena 0806.1218

  5. The ABJM theory The ABJM model has N = 6 SUSY in 3d it has two parameters N → rank of the gauge groups ’t Hooft coupling λ ∼ N k k → CS level (1 /k ∼ gauge coupling) it is a CFT in 3d with very nice properties - partition function and Wilson loops can be obtained from localization Gaiotto&Jafferis 0903.2175 Drukker, Mariño & Putrov 1003.3837 - has many integrability properties (Bethe ansatz, Wilson loop/ T. Klose, 1012.3999 amplitude relation, ...) - connection to FQHE? Fujita, Li, Ryu & Takayanagi, 0901.0924 it is the 3d analogue of N=4 SYM

  6. The ABJM theory sugra description in type IIA : 1 5 << k << N E ff ective description for N AdS 4 × CP 3 + fluxes CP 3 = C 4 / ( z i ∼ λ z i ) L 4 = 2 π 2 N k = 2 π 2 λ ds 2 = L 2 ds 2 AdS + L 2 ds 2 CP 3 F 4 = 3 π � 1 2 Ω AdS 4 � kN √ 2 J → Kahler form of CP 3 F 2 = 2 k J 1 � CP 1 F 2 = k 2 π � 2 N � 1 e φ = 2 L 4 = 2 √ π k 5 k

  7. • The ABJM theory • The flavored ABJM background • Probes on the flavored ABJM background • The flavored thermal ABJM background • Probes on the flavored thermal ABJM background • Conclusions

  8. Flavors in the ABJM background D6-branes extended in AdS 4 and wrapping RP 3 ⊂ CP 3 Hohenegger&Kirsch 0903.1730 Gaiotto&Jafferis 0903.2175 Introduce quarks in the ( N, 1) and (1 , N ) representation Q 2 → (1 , ¯ ˜ Q 1 → ( ¯ ˜ Q 1 → ( N, 1) N ) N, 1) Q 2 → (1 , N ) coupling to the vector multiplet 1 e − V Q 1 + Q † V Q 2 + antiquarks 2 e − ˆ Q † V, ˆ V vector supermultiplets for A , ˆ A C I = ( A 1 , A 2 , B † coupling to the bifundamentals 1 , B † 2 ) ˜ ˜ plus quartic terms in Q, ˜ Q 1 A i B i Q 1 , Q 2 B i A i Q 2 Q ’s

  9. Flavors in the ABJM background ds 2 = L 2 ds 2 AdS + L 2 ds 2 CP 3 Write CP 3 as an S 2 -bundle over S 4 , ξ , ˆ θ , ˆ ( x 0 , x 1 , x 2 , r ψ , ˆ ) ϕ , θ , ϕ | {z } | {z } |{z} AdS 4 S 4 S 2 d ⇠ 2 + ⇠ 2  ✓ ( ! 1 ) 2 + ( ! 2 ) 2 + ( ! 3 ) 2 �◆ dx i + ✏ ijk A j x k ⌘ 2 � 4 ds 2 = L 2 ds 2 ⇣ AdS 4 + L 2 � + (1 + ⇠ 2 ) 2 4 where x 1 sin θ cos ϕ = cos ˆ ψ d ˆ θ + sin ˆ ψ sin ˆ ω 1 θ d ˆ ϕ = x 2 sin θ sin ϕ = sin ˆ ψ d ˆ θ − cos ˆ ψ sin ˆ ω 1 θ d ˆ ϕ = x 3 cos θ = d ˆ ψ + cos ˆ ω 3 θ d ˆ ϕ = ξ 2 A i = − 1 + ξ 2 ω i SU (2) instanton on S 4

  10. Flavors in the ABJM background D6-branes extended in AdS 4 and wrapping RP 3 ⊂ CP 3 , ξ , ˆ θ = 0 , ˆ ( x 0 , x 1 , x 2 , r ψ , ˆ ϕ = 0 , θ = θ ( r ) , ϕ ) | {z } | {z } | {z } AdS 4 S 4 S 2 Z Z d 7 ζ e − φ p ˆ S = S DBI + S W Z = − T D 6 − det ˆ g 7 + T D 6 C 7 θ ( r ) m 0 θ ( r ) = π / 2 m 0 = 0 ⇒

  11. The ABJM flavored background the idea is now to smear over positions and orientations E. Conde & A. V. Ramallo 1105.6045 ⇣ ⌘ P N f M ( i ) d 7 ζ e − φ √− det ˆ M ( i ) ˆ Backreaction R R S flav − T D 6 g 7 + T D 6 C 7 = i =1 ✓ ◆ Z Z 1 d 10 xe 3 φ / 4 p d 10 x C 7 ∧ Ω − det g 10 | Ω | + → − κ 2 10 Ω is a charge distribution 3-form C 7 = e − φ K is the calibration form preserve N=1 SUSY - no delta-function sources m 0 - much simpler (analytic) solutions − flavor symmetry : U (1) N f

  12. The ABJM flavored background modified Bianchi identity dF 2 = 2 π Ω

  13. The ABJM flavored background modified Bianchi identity dF 2 = 2 π Ω θ ( r ) = π / 2 solution for massless flavors

  14. The ABJM flavored background modified Bianchi identity dF 2 = 2 π Ω θ ( r ) = π / 2 solution for massless flavors go to vielbein basis S 4 S i = ( S 1 , S 2 , S 3 , S 4 ) along the base ( d ξ , ω 1 , ω 2 , ω 3 , d θ , d ϕ ) → E a = ( E 1 , E 2 ) S 2 along the fiber

  15. The ABJM flavored background modified Bianchi identity dF 2 = 2 π Ω θ ( r ) = π / 2 solution for massless flavors go to vielbein basis S 4 S i = ( S 1 , S 2 , S 3 , S 4 ) along the base ( d ξ , ω 1 , ω 2 , ω 3 , d θ , d ϕ ) → E a = ( E 1 , E 2 ) S 2 along the fiber 2 E 1 d θ + ξ S 1 S ξ = 1 + ξ 2 d ξ = E 2 sin d ϕ − ξ S 2 ξ = � sin ϕ ω 1 − cos ϕ ω 2 � S 1 = 1 + ξ 2 ξ cos ϕ ω 1 + sin ϕ ω 2 �� sin θ ω 3 − cos θ S 2 � � = 1 + ξ 2 ξ cos ϕ ω 1 + sin ϕ ω 2 �� − cos θ ω 3 − sin θ � � S 3 = 1 + ξ 2

  16. The ABJM flavored background ! 4 2 ds 2 = L 2 ds 2 ( S i ) 2 + X X AdS + L 2 ( E a ) 2 a =1 i =1 F 2 = k ( S 4 ∧ S 3 + S 1 ∧ S 2 ) h i E 1 ∧ E 2 − 2 F 4 = 3 k 2 L 2 Ω AdS 4

  17. The ABJM flavored background ! 4 2 Flavor backreaction ds 2 = L 2 ds 2 ( S i ) 2 + X X AdS + L 2 ( E a ) 2 a =1 i =1 F 2 = k ( S 4 ∧ S 3 + S 1 ∧ S 2 ) h i E 1 ∧ E 2 − η 2 η = 1 + 3 N f F 4 = 3 k 2 L 2 Ω AdS 4 k 4

  18. The ABJM flavored background ! 4 2 1 Flavor backreaction ds 2 = L 2 ds 2 ( S i ) 2 + X X AdS + L 2 ( E a ) 2 q b 2 a =1 i =1 F 2 = k ( S 4 ∧ S 3 + S 1 ∧ S 2 ) h i E 1 ∧ E 2 − η 2 η = 1 + 3 N f F 4 = 3 k 2 L 2 Ω AdS 4 k 4

  19. The ABJM flavored background ! 4 2 1 Flavor backreaction ds 2 = L 2 ds 2 ( S i ) 2 + X X AdS + L 2 ( E a ) 2 q b 2 a =1 i =1 F 2 = k ( S 4 ∧ S 3 + S 1 ∧ S 2 ) h i E 1 ∧ E 2 − η 2 η = 1 + 3 N f F 4 = 3 k 2 L 2 Ω AdS 4 k 4 s  N f 1 + 3 ◆ 4 ✓ N f ◆ 2 ✓ 3 q = 3 + 9 N f 1 + 3 N f k − ...  8 k − 2 k + k 4 4 4 ( N f q → 5 k → ∞ )  3 r ⌘ 2 ⇣ N f N f N f 4 + 39 1 + 3 9  N f k + 1 + 3 k − ... k − 16 4 16 k  16 b = N f ( N f 3 + 3 q → 5 k → ∞ )  2 k 4

  20. The ABJM flavored background ! 4 2 1 Flavor backreaction ds 2 = L 2 ds 2 ( S i ) 2 + X X AdS + L 2 ( E a ) 2 q b 2 a =1 i =1 F 2 = k ( S 4 ∧ S 3 + S 1 ∧ S 2 ) h i E 1 ∧ E 2 − η 2 η = 1 + 3 N f F 4 = 3 k 2 L 2 Ω AdS 4 k 4 s  N f 1 + 3 ◆ 4 ✓ N f ◆ 2 ✓ 3 q = 3 + 9 N f 1 + 3 N f k − ...  8 k − 2 k + k 4 4 4 ( N f q → 5 k → ∞ )  3 r ⌘ 2 ⇣ N f N f N f 4 + 39 1 + 3 9  N f k + 1 + 3 k − ... k − 16 4 16 k  16 b = N f ( N f 3 + 3 q → 5 k → ∞ )  2 k 4 L 2 = π √ where is related to the quark-antiquark potential screening 2 λ σ σ

  21. The ABJM flavored background 4 q q 2 b b Σ σ � Ε N f 0 5 10 15 20 25 30 k √ 2 π 3 q = − Q Q = 4 √ potential screening V q ¯ ; λ σ → l Γ (1 / 4) 4 N f 8 1 − 3 q 3 / 2 ( η + q ) 2 (2 − q ) 1 / 2 σ = 1 k − ... 8 < q ( N f ( q + η q − η ) 5 / 2 4 k k → ∞ ) → : N f

  22. The ABJM flavored background 4 q q 2 b b Σ σ � Ε N f 0 5 10 15 20 25 30 k √ 2 π 3 q = − Q Q = 4 √ potential screening V q ¯ ; λ σ → l Γ (1 / 4) 4 N f 8 1 − 3 q 3 / 2 ( η + q ) 2 (2 − q ) 1 / 2 σ = 1 k − ... 8 < q ( N f ( q + η q − η ) 5 / 2 4 k k → ∞ ) → : N f ◆ 1 / 4 (2 − q ) 5 / 4 ✓ 2 N e φ = 4 √ π dilaton shifts ( η + q )[ q ( q + η q − η )] 1 / 4 k 5

  23. The ABJM flavored background 4 q q 2 b b Σ σ � Ε N f 0 5 10 15 20 25 30 k √ 2 π 3 q = − Q Q = 4 √ potential screening V q ¯ ; λ σ → l Γ (1 / 4) 4 N f 8 1 − 3 q 3 / 2 ( η + q ) 2 (2 − q ) 1 / 2 σ = 1 k − ... 8 < q ( N f ( q + η q − η ) 5 / 2 4 k k → ∞ ) → : N f ◆ 1 / 4 (2 − q ) 5 / 4 ✓ 2 N e φ = 4 √ π dilaton shifts ( η + q )[ q ( q + η q − η )] 1 / 4 k 5 regime of validity N 1 / 5 ⌧ N f ⌧ N

  24. • The ABJM theory • The flavored ABJM background • Probes on the flavored ABJM background • The flavored thermal ABJM background • Probes on the flavored thermal ABJM background • Conclusions

  25. Probe Branes D6-branes extended in AdS 4 and wrapping RP 3 ⊂ CP 3 , ξ , ˆ θ = 0 , ˆ ( x 0 , x 1 , x 2 , r ψ , ˆ ϕ = 0 , θ ( r ) , ϕ ) | {z } | {z } | {z } AdS 4 S 4 S 2 u = r b new cartesian-like coordinates ✓ dr 2 r 2 + d θ 2 ◆ L 2 R = u cos θ ρ = u sin θ ; b 2 R L 2 d ρ 2 + dR 2 � � b 2 ( ρ 2 + R 2 ) θ ( r ) ρ R = R ( ρ ) profile

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend