definition of impulse response model g n
play

Definition of impulse response model g ( n ) : { ( n ) } Time - PowerPoint PPT Presentation

Impulse Response Models for LTI Systems 1. Definition of impulse response model g ( n ) : { ( n ) } Time Invariant { g ( n ) } System For an arbitrary input { u ( n ) } , output { y ( n ) } of LTI system with zero initial state is given by:


  1. Impulse Response Models for LTI Systems 1. Definition of impulse response model g ( n ) : { δ ( n ) } Time Invariant { g ( n ) } System For an arbitrary input { u ( n ) } , output { y ( n ) } of LTI system with zero initial state is given by: ∞ � y ( n ) = u ( k ) g ( n − k ) k = −∞ All possible combinations such that the sum of argu- ments is equal to n 1 Digital Control Kannan M. Moudgalya, Autumn 2007

  2. Importance of Impulse Response Models 2. • Impulse response has all information about LTI sys- tem • Given impulse response, can determine output due to any arbitrary input 2 Digital Control Kannan M. Moudgalya, Autumn 2007

  3. Step Response, Relation with Impulse Response 3. The unit step response of an LTI system at zero ini- tial state { s ( n ) } is the output when { u ( n ) } = { 1( n ) } : ∞ � s ( n ) = 1( k ) g ( n − k ) k = −∞ Apply the meaning of 1( k ) : ∞ � = g ( n − k ) k =0 • This shows that the step response is the sum of impulse response. 3 Digital Control Kannan M. Moudgalya, Autumn 2007

  4. Relation between Step and Impulse Responses 4. • We can also get impulse response from step re- sponse. δ ( n ) = 1( n ) − 1( n − 1) Using linearity and time invariance properties, g ( n ) = s ( n ) − s ( n − 1) 4 Digital Control Kannan M. Moudgalya, Autumn 2007

  5. Causality of LTI Systems 5. • If output depends only on past inputs, called causal • If output depends on future inputs, not causal • For LTI causal systems, g ( n ) = 0 for n < 0 – Initial state is zero – No input until n = 0 - impulse input – So, impulse response can begin only from n = 0 • Signal { u ( n ) } is causal if u ( k ) = 0 for k < 0 5 Digital Control Kannan M. Moudgalya, Autumn 2007

  6. Output of Causal Systems to Causal Signals 6. • Impulse response g ( n ) , input u ( n ) are causal: ∞ � y ( n ) = u ( k ) g ( n − k ) k = −∞ ∞ � = u ( k ) g ( n − k ) ( u ( k ) = 0 ∀ k < 0) k =0 n � = u ( k ) g ( n − k ) ( g ( k ) = 0 ∀ k < 0) k =0 6 Digital Control Kannan M. Moudgalya, Autumn 2007

  7. Convolution Theorems 7. Convolution is Commutative: u ( n ) ∗ g ( n ) = g ( n ) ∗ u ( n ) Convolution is Associative: u ( n ) ∗ ( g 1 ( n ) ∗ g 2 ( n )) = ( u ( n ) ∗ g 1 ( n )) ∗ g 2 ( n ) Convolution Distributes over Addition: u ( n ) ∗ ( g 1 ( n ) + g 2 ( n )) = u ( n ) ∗ g 1 ( n ) + u ( n ) g 1 ( n ) u ( n ) y 2 ( n ) + u ( n ) y 1 ( n ) g 1 ( n ) + g 2 ( n ) g 2 ( n ) 7 Digital Control Kannan M. Moudgalya, Autumn 2007

  8. External (BIBO) Stability of LTI Systems 8. If every Bounded Input produces Bounded Output, • system is externally stable • equivalently, system is BIBO stable ∞ � | g ( n ) | < ∞ ⇔ BIBO Stability n = −∞ • Don’t care about what unbounded input does... 8 Digital Control Kannan M. Moudgalya, Autumn 2007

  9. Recall convolution example 9. ∞ � { y ( n ) } = u ( k ) { g ( n − k ) } k = −∞ { g ( n ) } = { 1 , 2 , 3 } , { u ( n ) } = { 4 , 5 , 6 } g , u start at n = 0 . They are zero for n < 0 . y (0) = u (0) g (0) = 4 y (1) = u (0) g (1) + u (1) g (0) = 13 y (2) = u (0) g (2) + u (1) g (1) + u (2) g (0) = 28 y (3) = u (1) g (2) + u (2) g (1) = 27 y (4) = u (2) g (2) = 18 All other terms that don’t appear above are zero. 9 Digital Control Kannan M. Moudgalya, Autumn 2007

  10. Polynomial Calculation ≡ Convolution 10. Also carryout multiplication: ( u (0)+ u (1) z − 1 + u (2) z − 2 ) × ( g (0)+ g (1) z − 1 + g (2) z − 2 ) = u (0) g (0) + ( u (0) g (1) + u (1) g (0)) z − 1 + ( u (0) g (2) + u (1) g (1) + u (2) g (0)) z − 2 + ( u (1) g (2) + u (2) g (1)) z − 3 + • z a position marker - coeff. of z − i at i th instant • u (0)+ u (1) z − 1 + u (2) z − 2 - a way of represent- ing a sequence with three terms: { u (0) , u (1) , u (2) } • Even if large no. of terms, can get compact form 10 Digital Control Kannan M. Moudgalya, Autumn 2007

  11. Definition of Z-transform 11. Z-transform of a sequence { u ( n ) } , denoted by U ( z ) , is defined as: ∞ u ( n ) z − n � U ( z ) = n = −∞ where z is such that there is absolute convergence. That is, z should be chosen so as to satisfy ∞ | u ( n ) z − n | < ∞ � n = −∞ 11 Digital Control Kannan M. Moudgalya, Autumn 2007

  12. Important properties of transfer functions 12. Given a causal, BIBO stable system with impulse re- sponse g ( n ) • Z-transform of g ( n ) , namely G ( z ) , will have poles inside unit circle g ( n ) is a causal sequence • G ( z ) = N ( z ) D ( z ) with – N ( z ) is a polynomial of degree n – D ( Z ) is a polynomial of degree m • n ≤ m 12 Digital Control Kannan M. Moudgalya, Autumn 2007

  13. Z-transform Theorems - Linearity 13. Given the following Z-transform pairs, u 1 ( n ) ↔ U 1 ( z ) , u 2 ( n ) ↔ U 2 ( z ) , the following relation, with arbitrary α , β , holds: Z [ α { u 1 ( n ) } + β { u 2 ( n ) } ] = αU 1 ( z ) + βU 2 ( z ) 13 Digital Control Kannan M. Moudgalya, Autumn 2007

  14. Example 1 - Linearity 14. Find the Z-transform of u 1 ( n ) = δ ( n ) − 3 δ ( n − 2) : ∞ ∞ δ ( n ) z − n − 3 � � δ ( n − 2) z − n U 1 ( z ) = n = −∞ n = −∞ ∀ z − 1 finite = 1 − 3 z − 2 14 Digital Control Kannan M. Moudgalya, Autumn 2007

  15. Z-transform - Shifting 15. ∞ u ( n + d ) z − n � Z [ u ( n + d )] = n = −∞ ∞ u ( n + d ) z − ( n + d ) = z d � n = −∞ = z d U ( z ) 15 Digital Control Kannan M. Moudgalya, Autumn 2007

  16. Z-transform - Shifting 16. Example: If { u ( n ) } ↔ U ( z ) , then { u ( n + 3) } ↔ z 3 U ( z ) { u ( n − 2) } ↔ z − 2 U ( z ) 16 Digital Control Kannan M. Moudgalya, Autumn 2007

  17. Initial value, theorem for causal signals 17. z →∞ U ( z ) = u (0) lim 17 Digital Control Kannan M. Moudgalya, Autumn 2007

  18. Final value theorem for causal signals 18. • Under the conditions – U ( z ) converges for all | z | > 1 , – if all poles of U ( z )(1 − z − 1 ) are inside unit circle, z → 1 (1 − z − 1 ) U ( z ) k →∞ u ( k ) = lim lim 18 Digital Control Kannan M. Moudgalya, Autumn 2007

  19. Examples for Final Value Theorem 19. Using the final value theorem, find the steady state value of (0 . 5 n − 0 . 5)1( n ) and verify. z − 0 . 5 − 0 . 5 z z (0 . 5 n − 0 . 5)1( n ) ↔ z − 1 | z | > 1 n →∞ LHS = − 0 . 5 lim 0 . 5 z z → 1 ( z − 1) RHS = − lim lim z − 1( z − 1) z → 1 = − 0 . 5 19 Digital Control Kannan M. Moudgalya, Autumn 2007

  20. Examples for Final Value Theorem 20. Is it possible to use the final value theorem on 2 n 1( n ) ? z 2 n 1( n ) ↔ z − 2 | z | > 2 • Since RHS is valid only for | z | > 2 , the theorem cannot even be applied. • In the LHS also, there is a pole outside the unit cir- cle thereby violating the conditions of the theorem. 20 Digital Control Kannan M. Moudgalya, Autumn 2007

  21. Z-transform of Convolution 21. If u ( n ) ↔ U ( z ) g ( n ) ↔ G ( z ) then, g ( n ) ∗ u ( n ) ↔ G ( z ) U ( z ) Recall the motivation slide for Z-transform. 21 Digital Control Kannan M. Moudgalya, Autumn 2007

  22. Z-transform of Discrete State Space Systems 22. x ( n + 1) = Ax ( n ) + Bu ( n ) x (0) = x 0 Invalid for n = − 1 : x (0) = Ax ( − 1) + Bu ( − 1) = 0 � = x 0 The fact that it is not valid for n < 0 is not explicitly stated. But if we write it as x ( n + 1) = Ax ( n ) + Bu ( n ) + δ ( n + 1) x 0 and assume initial rest, all variables are zero until n = 0 , problem is solved. 22 Digital Control Kannan M. Moudgalya, Autumn 2007

  23. Z-transform of Discrete State Space Systems 23. Z-transform of x ( n + 1) = Ax ( n ) + Bu ( n ) + δ ( n + 1) x 0 gives zX ( z ) = AX ( z ) + BU ( z ) + x 0 z ( zI − A ) X ( z ) = BU ( z ) + x 0 z X ( z ) = ( zI − A ) − 1 BU ( z ) + z ( zI − A ) − 1 x 0 Z-transform of y ( n ) = Cx ( n ) + Du ( n ) is Y ( z ) = CX ( z ) + DU ( z ) = C ( zI − A ) − 1 BU ( z ) + DU ( z ) + C ( zI − A ) − 1 zx (0) = [ C ( zI − A ) − 1 B + D ] U ( z ) + C ( zI − A ) − 1 zx (0) 23 Digital Control Kannan M. Moudgalya, Autumn 2007

  24. Finding Transfer Function - an Example 24. Find the transfer function of � � � � 1 0 0 . 02 A = , B = 0 . 19801 0 . 9802 0 . 001987 � � C = 0 1 D = 0 , , G = c ( zI − A ) − 1 B � − 1 � � � � z − 1 0 0 . 02 � = 0 1 − 0 . 19801 z − 0 . 9802 0 . 001987 � � 0 1 � z − 0 . 9802 � � � 0 0 . 02 = 0 . 19801 z − 1 0 . 001987 ( z − 1)( z − 0 . 9802) 24 Digital Control Kannan M. Moudgalya, Autumn 2007

  25. Finding Transfer Function - an Example 25. � � 0 1 � z − 0 . 9802 � � � 0 0 . 02 G = 0 . 19801 z − 1 0 . 001987 ( z − 1)( z − 0 . 9802) � � 0 . 19801 z − 1 � � 0 . 02 = 0 . 001987 ( z − 1)( z − 0 . 9802) = 0 . 001987 z + 0 . 0019732 ( z − 1)( z − 0 . 9802) z + 0 . 9931 = 0 . 001987 ( z − 1)( z − 0 . 9802) 25 Digital Control Kannan M. Moudgalya, Autumn 2007

  26. Finding Transfer Function - an Example 26. / / U p d a t e d ( 1 8 − 7 − 0 7 ) 1 / / 4 . 4 2 3 4 F = [0 0; 1 − 0.1]; G = [ 0 . 1 ; 0 ] ; 5 C = [0 1 ] ; dt = 0 . 2 ; 6 sys = syslin ( ’ c ’ ,F ,G,C) ; 7 sysd = dscr ( sys , dt ) ; 8 H = ss2tf ( sysd ) ; 26 Digital Control Kannan M. Moudgalya, Autumn 2007

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend