on the universal optimality of the 600 cell the
play

On the universal optimality of the 600 -cell: the Levenshtein - PowerPoint PPT Presentation

On the universal optimality of the 600 -cell: the Levenshtein framework lifted Peter Dragnev Purdue University Fort Wayne Joint work with: P. Boyvalenkov (Bulgarian Academy of Sciences), D. Hardin, E. Saff (Vanderbilt), M. Stoyanova (Sofia


  1. On the universal optimality of the 600 -cell: the Levenshtein framework lifted Peter Dragnev Purdue University Fort Wayne Joint work with: P. Boyvalenkov (Bulgarian Academy of Sciences), D. Hardin, E. Saff (Vanderbilt), M. Stoyanova (Sofia University, Bulgaria) Optimal and Random Point Configurations, February 26 – March 2, 2018 ICERM, Providence, RI PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 1 / 44

  2. Outline Minimal Energy, Spherical Harmonics, Gegenbauer Polynomials Delsarte-Yudin Linear Programming Dual Programming Heuristics 1 / N -Quadrature and ULB space Levenshtein Framework - ULB Theorem Test Functions - Levenshtein Framework Lifted The Universality of the 600-cell Revisited PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 2 / 44

  3. Minimal Energy Problem Spherical Code: A finite set C ⊂ S n − 1 with cardinality | C | = N . r 2 = | x − y | 2 = 2 − 2 � x , y � = 2 − 2 t . Interaction potential h : [ − 1 , 1 ) → R The h -energy of a spherical code C ⊂ S n − 1 : � E ( n , h ; C ) := h ( � x , y � ) , x , y ∈ C , y � = x where t = � x , y � denotes Euclidean inner product of x and y . Minimal Energy Problem: Find E ( n , h ; N ) := min { E ( n , h ; C ) | C ⊂ S n − 1 , | C | = N } . PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 3 / 44

  4. Absolutely Monotone Potentials Interaction potential h : [ − 1 , 1 ) → R Absolutely monotone potentials: C ∞ + := { h | h ( k ) ( t ) ≥ 0 , t ∈ [ − 1 , 1 ) , k ≥ 0 } . Examples: Newton potential: h ( t ) = ( 2 − 2 t ) − ( n − 2 ) / 2 = | x − y | − ( n − 2 ) ; Riesz s -potential: h ( t ) = ( 2 − 2 t ) − s / 2 = | x − y | − s ; Log potential: h ( t ) = − log( 2 − 2 t ) = − log | x − y | ; Gaussian potential: h ( t ) = exp( 2 t − 2 ) = exp( −| x − y | 2 ) ; PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 4 / 44

  5. Spherical Harmonics Harm ( k ) : homogeneous harmonic polynomials in n variables of degree k restricted to S n − 1 with � k + n − 3 � � 2 k + n − 2 � r k , n := dim Harm ( k ) = . n − 2 k Spherical harmonics (degree k ): { Y kj ( x ) : j = 1 , 2 , . . . , r k , n } orthonormal basis of Harm ( k ) with respect to normalized ( n − 1 ) -dimensional surface area measure on S n − 1 . PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 5 / 44

  6. Spherical Harmonics and Gegenbauer Polynomials The Gegenbauer polynomials and spherical harmonics can be defined through the Addition Formula ( t = � x , y � ): r k k ( � x , y � ) = 1 P ( n ) k ( t ) := P ( n ) � x , y ∈ S n − 1 . Y kj ( x ) Y kj ( y ) , r k j = 1 { P ( n ) k = 0 orthogonal w/weight ( 1 − t 2 ) ( n − 3 ) / 2 and P ( n ) k ( t ) } ∞ k ( 1 ) = 1. Gegenbauer polynomials P ( n ) k ( t ) are special types of Jacobi ( t ) orthogonal w.r.t. weight ( 1 − t ) α ( 1 + t ) β on polynomials P ( α,β ) k [ − 1 , 1 ] , where α = β = ( n − 3 ) / 2 . PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 6 / 44

  7. Spherical Designs The k -th moment of a spherical code C ⊂ S n − 1 is r k k ( � x , y � ) = 1 P ( n ) � � � M k ( C ) := Y kj ( x ) Y kj ( y ) r k x , y ∈ C j = 1 x , y ∈ C � 2 r k �� = 1 � Y kj ( x ) ≥ 0 . r k j = 1 x ∈ C M k ( C ) = 0 if and only if � x ∈ C Y ( x ) = 0 for all Y ∈ Harm ( k ) . If M k ( C ) = 0 for 1 ≤ k ≤ τ , then C is called a spherical τ -design and � S n − 1 p ( y ) d σ n ( y ) = 1 � ∀ p ∈ Π τ ( R n ) . p ( x ) , N x ∈ C PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 7 / 44

  8. ‘Good’ potentials for lower bounds Suppose f : [ − 1 , 1 ] → R is of the form ∞ f k P ( n ) � f ( t ) = k ( t ) , f k ≥ 0 for all k ≥ 1 . (1) k = 0 f ( 1 ) = � ∞ k = 0 f k < ∞ = ⇒ convergence is absolute and uniform. Then: PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 8 / 44

  9. ‘Good’ potentials for lower bounds Suppose f : [ − 1 , 1 ] → R is of the form ∞ f k P ( n ) � f ( t ) = k ( t ) , f k ≥ 0 for all k ≥ 1 . (2) k = 0 f ( 1 ) = � ∞ k = 0 f k < ∞ = ⇒ convergence is absolute and uniform. Then: � E ( n , C ; f ) = f ( � x , y � ) − f ( 1 ) N x , y ∈ C ∞ P ( n ) � � = f k k ( � x , y � ) − f ( 1 ) N k = 0 x , y ∈ C PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 9 / 44

  10. ‘Good’ potentials for lower bounds Suppose f : [ − 1 , 1 ] → R is of the form ∞ f k P ( n ) � f ( t ) = k ( t ) , f k ≥ 0 for all k ≥ 1 . (2) k = 0 f ( 1 ) = � ∞ k = 0 f k < ∞ = ⇒ convergence is absolute and uniform. Then: � E ( n , C ; f ) = f ( � x , y � ) − f ( 1 ) N x , y ∈ C ∞ � = f k M k ( C ) − f ( 1 ) N k = 0 PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 9 / 44

  11. ‘Good’ potentials for lower bounds Suppose f : [ − 1 , 1 ] → R is of the form ∞ f k P ( n ) � f ( t ) = k ( t ) , f k ≥ 0 for all k ≥ 1 . (2) k = 0 f ( 1 ) = � ∞ k = 0 f k < ∞ = ⇒ convergence is absolute and uniform. Then: � E ( n , C ; f ) = f ( � x , y � ) − f ( 1 ) N x , y ∈ C ∞ � = f k M k ( C ) − f ( 1 ) N k = 0 � f 0 − f ( 1 ) � ≥ f 0 N 2 − f ( 1 ) N = N 2 . N PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 9 / 44

  12. Delsarte-Yudin LP Bound Let A n , h := { f : f ( t ) ≤ h ( t ) , t ∈ [ − 1 , 1 ) , f k ≥ 0 , k = 1 , 2 , . . . } . Thm (Delsarte-Yudin Lower Energy Bound) For any C ⊂ S n − 1 with | C | = N and f ∈ A n , h , E ( n , h ; C ) ≥ N 2 ( f 0 − f ( 1 ) N ) . (3) C satisfies E ( n , h ; C ) = E ( n , f ; C ) = N 2 ( f 0 − f ( 1 ) N ) ⇐ ⇒ (a) f ( t ) = h ( t ) for t ∈ {� x , y � : x � = y , x , y ∈ C } , and (b) for all k ≥ 1, either f k = 0 or M k ( C ) = 0 . PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 10 / 44

  13. Linear program: Maximize D-Y lower bound Maximizing Delsarte-Yudin lower bound is a linear programming problem. Maximize N 2 ( f 0 − f ( 1 ) N ) subject to f ∈ A n , h . PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 11 / 44

  14. Linear program: Maximize D-Y lower bound Maximizing Delsarte-Yudin lower bound is a linear programming problem. Maximize N 2 ( f 0 − f ( 1 ) N ) subject to f ∈ A n , h . For a subspace Λ ⊂ C ([ − 1 , 1 ]) , we consider N 2 ( f 0 − f ( 1 ) W ( n , N , Λ; h ) := sup N ) . (4) f ∈ Λ ∩ A n , h PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 12 / 44

  15. Linear program: Maximize D-Y lower bound Maximizing Delsarte-Yudin lower bound is a linear programming problem. Maximize N 2 ( f 0 − f ( 1 ) N ) subject to f ∈ A n , h . For a subspace Λ ⊂ C ([ − 1 , 1 ]) , we consider N 2 ( f 0 − f ( 1 ) W ( n , N , Λ; h ) := sup N ) . (5) f ∈ Λ ∩ A n , h Usually, Λ = span { P ( n ) } i ∈ I for some finite I , i and we replace f ( t ) ≤ h ( t ) with f ( t j ) ≤ h ( t j ) , j ∈ J for finite J . PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 13 / 44

  16. Dual Programming Heuristics Primal Program Dual Program Maximize c T x Minimize b T y subject to A T y ≥ b , y ≥ 0 subject to Ax ≤ b , x ≥ 0 PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 14 / 44

  17. Dual Programming Heuristics Primal Program Dual Program Maximize c T x Minimize b T y subject to A T y ≥ b , y ≥ 0 subject to Ax ≤ b , x ≥ 0 f 0 − 1 � Maximize Primal f i N i ∈ I f i P ( n ) � subject to: ( t j ) ≤ h ( t j ) , j ∈ J , f i ≥ 0 . i i ∈ I PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 15 / 44

  18. Dual Programming Heuristics Primal Program Dual Program Maximize c T x Minimize b T y subject to A T y ≥ b , y ≥ 0 subject to Ax ≤ b , x ≥ 0 f 0 − 1 � Maximize Primal f i N i ∈ I f i P ( n ) � subject to: ( t j ) ≤ h ( t j ) , j ∈ J , f i ≥ 0 . i i ∈ I � Dual Minimize ρ j h ( t j ) j ∈ J subject to: 1 ρ j P ( n ) � N + ( t j ) ≥ 0 , i ∈ I \ { 0 } , ρ j ≥ 0 . i j ∈ J PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 16 / 44

  19. Dual Programming Heuristics - complementary slackness Add slack variables { u j } j ∈ J and { w i } i ∈ I . f 0 − 1 � Primal Maximize f i N i ∈ I f i P ( n ) � subject to: ( t j ) + u j = h ( t j ) , j ∈ J , f i ≥ 0 . i i ∈ I � Dual Minimize ρ j h ( t j ) j ∈ J subject to: 1 ρ j P ( n ) � N + ( t j ) − w i = 0 , i ∈ I \ { 0 } , ρ j ≥ 0 . i j ∈ J Complementary slackness condition for Primal Objective=Dual Objective: f i · w i = 0, i ∈ I , and ρ j · u j = 0, j ∈ J . PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 17 / 44

  20. 1 / N -Quadrature Rules For a subspace Λ ⊂ C [ − 1 , 1 ] we say { ( α i , ρ i ) } k i = 1 with − 1 ≤ α i < 1, ρ i > 0 for i = 1 , 2 , . . . , k is a 1 / N -quadrature rule exact for Λ if � 1 k f ( t )( 1 − t 2 ) ( n − 3 ) / 2 dt = f ( 1 ) � f 0 = γ n + ρ i f ( α i ) , ( f ∈ Λ) . N − 1 i = 1 k ⇒ f 0 − f ( 1 ) � = = ρ i f ( α i ) . N i = 1 PB, PD, DH, ES, MS Levenshtein framework lifted March 2, 2018 18 / 44

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend