optimality conditions
play

Optimality Conditions Fabio Schoen 2008 - PowerPoint PPT Presentation

Optimality Conditions Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Optimality Conditions p. Optimality Conditions: descent directions Let S R n be a convex set and consider the problem min x S f ( x ) where f : S R .


  1. Optimality Conditions Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Optimality Conditions – p.

  2. Optimality Conditions: descent directions Let S ⊆ R n be a convex set and consider the problem min x ∈ S f ( x ) where f : S → R . Let x 1 , x 2 ∈ S and d = x 2 − x 1 . d is a feasible direction. ǫ > 0 such that f ( x 1 + ǫd ) < f ( x 1 ) ∀ ǫ ∈ (0 , ¯ If there exists ¯ ǫ ) , d is called a descent direction at x 1 . Elementary necessary optimality condition: if x ⋆ is a local optimum, no descent direction may exist at x ⋆ Optimality Conditions – p.

  3. Optimality Conditions for Convex Sets If x ⋆ ∈ S is a local optimum for f () and there exists a neighborhood U ( x ⋆ ) such that f ∈ C 1 ( U ( x ⋆ )) , then d T ∇ f ( x ⋆ ) ≥ 0 ∀ d : feasible direction Optimality Conditions – p.

  4. Optimality Conditions – p.

  5. proof Taylor expansion: f ( x ⋆ + ǫd ) = f ( x ⋆ ) + ǫd T ∇ f ( x ⋆ ) + o ( ǫ ) d cannot be a descent direction, so, if ǫ is sufficiently small, then f ( x ⋆ + ǫd ) ≥ f ( x ⋆ ) . Thus ǫd T ∇ f ( x ⋆ ) + o ( ǫ ) ≥ 0 and dividing by ǫ , d T ∇ f ( x ⋆ ) + o ( ǫ ) ≥ 0 ǫ Letting ǫ ↓ 0 the proof is complete. Optimality Conditions – p.

  6. Optimality Conditions: tangent cone General case: min f ( x ) g i ( x ) ≤ 0 i = 1 , . . . , m x ∈ X ( X : open set ) Let S = { x ∈ X : g i ( x ) ≤ 0 , i = 1 , . . . , m } . x ) = { d ∈ R n } : Tangent cone to S in ¯ x : T (¯ x k − ¯ d x � d � = lim � x k − ¯ x � x k → ¯ x where x k ∈ S . Optimality Conditions – p.

  7. b c b c b c b b c b c b c Optimality Conditions – p.

  8. Some examples S = R n ⇒ T ( x ) = R n ∀ x S = { Ax = b } ⇒ T ( x ) = { d : Ad = 0 } S = { Ax ≤ b } ; let I be the set of active constraints in ¯ x : a T i ¯ x = b i i ∈ I a T i ¯ x < b i i �∈ I . Optimality Conditions – p.

  9. Optimality Conditions – p.

  10. Let d = lim k ( x k − ¯ x ) / � ( x k − ¯ x ) � ⇒ a T i d = a T k ( x k − ¯ x ) / � ( x k − ¯ x ) � i ∈ I i lim k a T i ( x k − ¯ x ) / � ( x k − ¯ x ) � = lim k ( a T = lim i x k − b ) / � ( x k − ¯ x ) � ≤ 0 x ) ⇒ a T Thus if d ∈ T (¯ i d ≤ 0 for i ∈ I . Optimality Conditions – p. 1

  11. x + α k d . If a T Viceversa, let x k = ¯ i d ≤ 0 for i ∈ I ⇒ a T i x k = a T i (¯ x + α k d ) i ∈ I = b i + α k a T i d ≤ b i a T i x k = a T i (¯ x + α k d ) i �∈ I < b i + α k a T i d ≤ b i if α k small enough Thus T ( x ) = { d : a T i d ≤ 0 ∀ i ∈ I} Optimality Conditions – p. 1

  12. Example Let S = { ( x, y ) ∈ R 2 : x 2 − y = 0 } (parabola). Tangent cone at (0 , 0) ? Let { ( x k , y k ) → (0 , 0) } , i.e. x k → 0 , y k = x 2 k : � x 2 � ( x k , y k ) − (0 , 0) � = k + ( x k ) 4 � 1 + x 2 = | x k | k and x k y k lim = 1 lim = 0 � � 1 + x 2 1 + x 2 | x k | | x k | x k → 0 + x k → 0 + k k x k y k = − 1 lim lim = 0 � � 1 + x 2 1 + x 2 | x k | | x k | x k → 0 − x k → 0 − k k thus T (0 , 0) = { ( − 1 , 0) , (1 , 0) } Optimality Conditions – p. 1

  13. Descent direction d ∈ R n is a feasible direction in ¯ x ∈ S if ∃ ¯ α > 0 : x + αd ∈ S ∀ α ∈ [0 , ¯ ¯ α ) . d feasible ⇒ d ∈ T (¯ x ) , but in general the converse is false. If f (¯ x + αd ) ≤ f (¯ x ) ∀ α ∈ (0 , ¯ α ) d is a descent direction Optimality Conditions – p. 1

  14. I order necessary opt condition x ∈ S ⊆ R n be a local optimum for min x ∈ S f ( x ) ; let Let ¯ f ∈ C 1 ( U (¯ x )) . Then d T ∇ f (¯ x ) ≥ 0 ∀ d ∈ T (¯ x ) Proof d = lim k ( x k − ¯ x ) / � ( x k − ¯ x ) � . Taylor expansion: x ) + ∇ T f (¯ x )( x k − ¯ x ) + o ( � x k − ¯ x � ) f ( x k ) = f (¯ x ) + ∇ T f (¯ x )( x k − ¯ x ) + � x k − ¯ x � o (1) . = f (¯ x local optimum ⇒∃ U (¯ ¯ x ) : f ( x ) ≥ f (¯ x ) ∀ x ∈ U ∩ S . Optimality Conditions – p. 1

  15. . . . If k is large enough, x k ∈ U (¯ x ) : f ( x k ) − f (¯ x ) ≥ 0 thus ∇ T f (¯ x )( x k − ¯ x ) + � x k − ¯ x � o (1) ≥ 0 Dividing by � ( x k − ¯ x ) � : ∇ T f (¯ x )( x k − ¯ x ) / � ( x k − ¯ x ) � + o (1) ≥ 0 and in the limit ∇ T f (¯ x ) d ≥ 0 . Optimality Conditions – p. 1

  16. Examples Unconstrained problems Every d ∈ R n belongs to the tangent cone ⇒ at a local optimum ∇ T f (¯ ∀ d ∈ R n x ) d ≥ 0 Choosing d = e i e d = − e i we get ∇ f (¯ x ) = 0 NB: the same is true if ¯ x is a local minimum in the relative interior of the feasible region. Optimality Conditions – p. 1

  17. Linear equality constraints min f ( x ) Ax = b Tangent cone: { d : Ad = 0 } . Necessary conditions: ∇ T f (¯ x ) d ≥ 0 ∀ d : Ad = 0 equivalent statement: ∇ T f (¯ min x ) d = 0 d Ad = 0 (a linear program). Optimality Conditions – p. 1

  18. Linear equality constraints From LP duality ⇒ max 0 T λ = 0 A T λ = ∇ f (¯ x ) Thus at a local minimum point there exist Lagrange multipliers: ∃ λ : A T λ = ∇ f (¯ x ) Optimality Conditions – p. 1

  19. Linear inequalities min f ( x ) Ax ≤ b Tangent cone at a local minimum ¯ x : { d ∈ R n : a T i d ≤ 0 ∀ i ∈ I (¯ x ) } . Let A I be the rows of A associated to active constraints at ¯ x . Then ∇ T f (¯ min x ) d = 0 d A I d ≤ 0 λ ≤ 0 Optimality Conditions – p. 1

  20. Linear inequalities From LP duality: max 0 T λ = 0 A T I λ = ∇ f (¯ x ) λ ≤ 0 Thus, at a local optimum, the gradient is a non positive linear combination of the coefficients of active constraints. Optimality Conditions – p. 2

  21. Farkas’ Lemma Let A : matrix in R m × n and b ∈ R n . One and only one of the following sets: A T y ≤ 0 b T y > 0 and Ax = b x ≥ 0 is non empty Optimality Conditions – p. 2

  22. Geometrical interpretation A T y ≤ 0 Ax = b b T y > 0 x ≥ 0 a 1 { z : ∃ x : z = Ax, x ≥ 0 } b a 2 { y : A T y ≤ 0 } Optimality Conditions – p. 2

  23. Proof 1) if ∃ x ≥ 0 : Ax = b ⇒ b T y = x T A T y . Thus if A T y ≤ 0 ⇒ b T y ≤ 0 . 2) Premise: Separating hyperplane theorem: let C and D be two convex nonempty sets: C ∪ D = ∅ . Then there exists a � = 0 and b : a T x ≤ b x ∈ C a T x ≥ b x ∈ D If C is a point and D is a closed convex set, separation is strict, i.e. a T C < b a T x > b x ∈ D Optimality Conditions – p. 2

  24. Farkas’ Lemma (proof) 2) let { x : Ax = b, x ≥ 0 } = ∅ . Let S = { y ∈ R m : ∃ x ≥ 0 , Ax = y } S is closed, convex and b �∈ S . From the separating hyperplane theorem: ∃ α ∈ R m � = 0 , β ∈ R : α T y ≤ β ∀ x ∈ S α T b > β 0 ∈ S ⇒ β ≥ 0 ⇒ α T b > 0 ; α T Ax ≤ β for all x ≥ 0 . This is possible iff α T A ≤ 0 . Letting y = α we obtain a solution of A Y y ≤ 0 b T y > 0 Optimality Conditions – p. 2

  25. First order feasible variations cone x ) = { d ∈ R n : ∇ T g i (¯ x ) d ≤ 0 } i ∈ I G (¯ b b Optimality Conditions – p. 2

  26. First order variations x ) ⊇ T (¯ G (¯ x ) . In fact if { x k } is feasible and x k − ¯ x d = lim � x k − ¯ x � k then g i (¯ x ) ≤ 0 and g (¯ x + lim k ( x k − ¯ x )) ≤ 0 Optimality Conditions – p. 2

  27. . . . x � x k − ¯ x k � x k − ¯ x � ) ≤ 0 g (¯ x + lim � x k − ¯ x � lim x k − ¯ x g (¯ x + lim k � x k − ¯ x � ) ≤ 0 � x k − ¯ g (¯ x + lim k � x k − ¯ x � d ) ≤ 0 Let α k = � x k − ¯ x � , if α k ≈ 0 : x + α k d ) ≤ 0 g (¯ Optimality Conditions – p. 2

  28. x ) + α k ∇ T g i (¯ g i (¯ x + α k d ) = g i (¯ x ) d + o ( α k ) where α k > 0 and d belong to the tangent cone T (¯ x ) . If the i –th constraint is active, then x + α k d ) = α k ∇ T g i (¯ x ) d + o ( α k ) ≤ 0 g i (¯ x + α k d ) /α k = ∇ T g i (¯ x ) d + o ( α k )) /α k ≤ 0 g i (¯ Letting α k → 0 the result is obtained. Optimality Conditions – p. 2

  29. example x ) � = T (¯ G (¯ x ) ; − x 3 + y ≤ 0 − y ≤ 0 Optimality Conditions – p. 2

  30. KKT necessary conditions (Karush–Kuhn–Tucker) x ∈ X ⊆ R n , X � = ∅ be a local optimum for Let ¯ min f ( x ) g i ( x ) ≤ 0 i = 1 , . . . , m x ∈ X I : indices of active constraints at ¯ x . If: 1. f ( x ) , g i ( x ) ∈ C 1 (¯ x ) for i ∈ I 2. “constraint qualifications” conditions: T (¯ x ) = G (¯ x ) hold in ¯ x ; then there exist Lagrange multipliers λ i ≥ 0 , i ∈ I : � ∇ f (¯ λ i ∇ g i (¯ x ) + x ) = 0 . i ∈I Optimality Conditions – p. 3

  31. Proof x ) ⇒ d T ∇ f (¯ x local optimum ⇒ if d ∈ T (¯ ¯ x ) ≥ 0 . But d ∈ T (¯ x ) ⇒ d T ∇ g i (¯ x ) ≤ 0 i ∈ I . Thus it is impossible that −∇ T f (¯ x ) d > 0 ∇ T g i (¯ x ) d ≤ 0 i ∈ I From Farkas’ Lemma ⇒ there exists a solution of: � λ i ∇ T g i (¯ x ) = −∇ T f (¯ i ∈ I x ) i ∈I λ i ≥ 0 i ∈ I Optimality Conditions – p. 3

  32. Constraint qualifications: examples polyhedra: X = R n and g i ( x ) are affine functions: Ax ≤ b linear independence: X open set, g i ( x ) , i �∈ I continuous in ¯ x and {∇ g i (¯ x ) } , i ∈ I are linearly independent. Slater condition: X open set, g i ( x ) , i ∈ I convex differentiable x , g i ( x ) , i �∈ I continuous in ¯ x , and ∃ ˆ x ∈ X functions in ¯ strictly feasible: i ∈ I . g i (ˆ x ) < 0 Optimality Conditions – p. 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend