on the construction of several multivariate resultant
play

On the construction of several multivariate resultant matrices - PowerPoint PPT Presentation

On the construction of several multivariate resultant matrices Weikun Sun School of Science Tianjin University of Technology and Education Jan. 1st, 2014 Table of Content 1 Backgrounds and Historical Review 2 Sylvester-Macaulay Type 3


  1. On the construction of several multivariate resultant matrices Weikun Sun School of Science Tianjin University of Technology and Education Jan. 1st, 2014

  2. Table of Content 1 Backgrounds and Historical Review 2 Sylvester-Macaulay Type 3 Cayley-Dixon Type 4 Mixed Type

  3. What is the resultant?

  4. What is the resultant? In Gelfand, Kapranov and Zelevinsky’s book (1994) Definition The resultant of k +1 polynomials f 0 , . . . , f k in k variables is de- fined as an irreducible polynomial in the coefficients of f 0 , . . . , f k , which vanishes whenever these polynomials have a common root.

  5. The Problem So the problems here is

  6. The Problem So the problems here is 1 Does the resultant exist?

  7. The Problem So the problems here is 1 Does the resultant exist? 2 If does, how to find it?

  8. The Problem So the problems here is 1 Does the resultant exist? 2 If does, how to find it? The first question was proved in GKZ[1994], and in this talk, we will focus on Problem 2 and give some introductory results.

  9. Main Idea Given a polynomial system F § we want to construct a new poly- nomial system F ′ and use 1 the determinant of F ′ s coefficient matrix; OR 2 the maximal minor of F ′ s coefficient matrix; OR 3 the quotient of maximal minor and extraneous factor to find the resultant of original polynomial system.

  10. Historical Review 1 Sylvester Type Macaulay F. Macaulay[1902], J. Canny[1990] Newton sparse M. Kapranov, B. Sturmfels, A. Zelevinsky[1992] J. Canny, I. Emiris[1994, 1995, 2000] Dixon dialytic A. Chtcherba and D. Kapur[2002]

  11. Historical Review 1 Sylvester Type Macaulay F. Macaulay[1902], J. Canny[1990] Newton sparse M. Kapranov, B. Sturmfels, A. Zelevinsky[1992] J. Canny, I. Emiris[1994, 1995, 2000] Dixon dialytic A. Chtcherba and D. Kapur[2002] 2 Cayley Type Bezout Dixon A. Dixon[1908] D. Kapur, T. Saxena, L. Yang[1994]

  12. Historical Review 1 Sylvester Type Macaulay F. Macaulay[1902], J. Canny[1990] Newton sparse M. Kapranov, B. Sturmfels, A. Zelevinsky[1992] J. Canny, I. Emiris[1994, 1995, 2000] Dixon dialytic A. Chtcherba and D. Kapur[2002] 2 Cayley Type Bezout Dixon A. Dixon[1908] D. Kapur, T. Saxena, L. Yang[1994] 3 Mixed Type A. Dixon[1908] M. Zhang, E. Chionh and R. Goldman[1998] A. Khetan[2003], Sun and Li[2006]

  13. The System Consider the following generic n -degree ( k 1 , k 2 , . . . , k n ) polyno- mial system k 1 k n � � c 0 ,i 1 , ··· ,i n x k 1 1 · · · x k n f 0 ( x 1 , x 2 , . . . , x n ) = · · · n i 1 =0 i n =0 k 1 k n � � c 1 ,i 1 , ··· ,i n x k 1 1 · · · x k n f 1 ( x 1 , x 2 , . . . , x n ) = · · · n i 1 =0 i n =0 . . . k 1 k n � � c n,i 1 , ··· ,i n x k 1 1 · · · x k n f n ( x 1 , x 2 , . . . , x n ) = · · · n i 1 =0 i n =0 where c j,i 1 , ··· ,i n are unrelated parameters.

  14. Sylvester resultant matrix Consider the following ( n + 1)! � n i =1 k i polynomials x σ 1 1 x σ 2 2 · · · x σ n n · [ f 0 f 1 . . . f n ] (1) where = 0 , 1 , . . . , nk 1 − 1; σ 1 σ 2 = 0 , 1 , . . . , k 2 − 1; = 0 , 1 , . . . , 2 k 3 − 1; σ 3 . . . = 0 , 1 , . . . , ( n − 1) k n − 1 σ n Equation (1) represents multiply the original n + 1 polynomials by n ! � n i =1 k i monomials. In these polynomals, the highest degrees of variable x 1 , x 2 , . . . , x n are ( n + 1) k 1 − 1 , 2 k 2 − 1 , . . . , nk n − 1 respectively.

  15. Sylvester resultant matrix So we have ( n + 1)! � n i =1 k i polynomials, each of which consists of ( n + 1)! � n i =1 k i monomials.

  16. Sylvester resultant matrix Let L ( x 1 , x 2 , . . . , x n ) = [ f 0 f n ], then (1) can be ex- f 1 . . . pressed by matrix form as x ( n − 1) k n − 1 · · · x ( n − 1) k n − 1 x nk 1 − 1 [ L x n L · · · L · · · L ] n n 1 T   1 x n     . .   .   = S   x nk n − 1  n .    .   .   x ( n +1) k 1 − 1 · · · x nk n − 1 1 n where the coefficient matrix S is called Sylvester resultant matrix , whose size is ( n + 1)! � n i =1 k i × ( n + 1)! � n i =1 k i , and its determinant det S is called Sylvester resultant.

  17. Cayley resultant matrix Based on the Cayley quotient of { f 0 , f 1 , . . . , f n } � � f 0 ( x 1 , x 2 , . . . , x n ) f 1 ( x 1 , x 2 , . . . , x n ) · · · f n ( x 1 , x 2 , . . . , x n ) � � � � f 0 (¯ x 1 , x 2 , . . . , x n ) f 1 (¯ x 1 , x 2 , . . . , x n ) · · · f n (¯ x 1 , x 2 , . . . , x n ) � � � � · · · · · · · · · · · · � � � � f 0 (¯ x 1 , ¯ x 2 , . . . , ¯ x n ) f 1 (¯ x 1 , ¯ x 2 , . . . , ¯ x n ) · · · f n (¯ x 1 , ¯ x 2 , . . . , ¯ x n ) � � ( x 1 − ¯ x 1 )( x 2 − ¯ x 2 ) · · · ( x n − ¯ x n ) Cayley quotient is actually not a quotient, but a polynomial in two groups of variables x 1 , x 2 , . . . , x n and ¯ x 1 , ¯ x 2 , . . . , ¯ x n .

  18. Cayley resultant matrix In the expression of Cayley quotient, the highest degrees of vari- ables x 1 , x 2 , . . . , x n , ¯ x 1 , ¯ x 2 , . . . , ¯ x n are k 1 − 1 , 2 k 2 − 1 , . . . , nk n − 1 , nk 1 − 1 , ( n − 1) k 2 − 1 , . . . , k n − 1 respectively.

  19. Cayley resultant matrix So in matrix form, it can be expressed as   T   1 1 x n x n ¯         x 2 x 2 ¯     C (2) n n     . .  .   .  . .     x k 1 − 1 x nk 1 − 1 · · · x nk n − 1 x k n − 1 ¯ · · · ¯ 1 n 1 n Here the coefficient matrix is called Cayley resultant matrix , whose size is n ! � n i =1 k i × n ! � n i =1 k i , and its determinant det C is called Cayley resultant.

  20. Comparison Cayley res. matrix · · · Sylvester res. matrix n ! � n ( n + 1)! � n Size i =1 k i · · · i =1 k i Degree n + 1 · · · 1

  21. Comparison Cayley res. matrix · · · Sylvester res. matrix n ! � n ( n + 1)! � n Size i =1 k i · · · i =1 k i Degree n + 1 · · · 1 ⇑ Question: What happens here?

  22. Our Goal The next step is to construct a resultant matrix 1 whose size lies between the size of Cayley and Sylvester re- sultant matrix: n n ( n + 1)! k i × ( n + 1)! � � k i m m i =1 i =1 2 the degree of it’s entry in coefficients of original polynomial system is m (1 < m < n + 1) .

  23. Mixed Cayley-Sylvester resultant matrix The Mixed Cayley-Sylvester resultant matrix employs two key steps in previous procedure.

  24. Cayley quotient step Firstly, we consider following Cayley quotient Φ m � � f n − m +1 ( x 1 , . . . , x n − m +2 , . . . , x n ) · · · f n ( x 1 , . . . , x n − m +2 , . . . , x n ) � � � � f n − m +1 ( x 1 , . . . , x n − m +2 , . . . , ¯ x n ) · · · f n ( x 1 , . . . , x n − m +2 , . . . , ¯ x n ) � � � � . . . � . . . � . . . � � � � f n − m +1 ( x 1 , . . . , ¯ x n − m +2 , . . . , ¯ x n ) · · · f n ( x 1 , . . . , ¯ x n − m +2 , . . . , ¯ x n ) � � m × m ( x n − m +2 − ¯ x n − m +2 ) · · · ( x n − ¯ x n ) So this is a polynomial in variables x 1 , x 2 , . . . , x n − m +1 , x n − m +2 , . . . , x n with degrees mk 1 , mk 2 , . . . , mk n − m +1 , ( m − 1) k n − m +2 − 1 , . . . , k n − 1 and in variables x n − m +2 , . . . , ¯ ¯ x n with degrees k n − m +2 − 1 , . . . , ( m − 1) k n − 1 .

  25. Cayley quotient step ǫ n − m +2 Consider the coefficients of ¯ n − m +2 · · · ¯ x ǫ n n , where x ǫ n − m +2 = 0 , . . . , k n − m +2 − 1 . . . ǫ n = 0 , . . . , ( m − 1) k n − 1 we could have ( m − 1)! � n i = n − m +2 k i polynomials φ ǫ such that k n − m +2 − 1 ( m − 1) k n − 1 � � ǫ n − m +2 x ǫ n Φ m = · · · φ ǫ ( x 1 , x 2 , . . . , x n )¯ x n − m +2 · · · ¯ n ǫ n − m +2 =0 ǫ n =0

  26. Sylvester step Multiply φ ǫ ( x 1 , x 2 , . . . , x n ) by ( n − m + 1)! � n − m +1 k i monomials i =1 ( n − m +1) k n − m +1 − 1 1 , x 1 , x 2 , . . . x n − m +1 , . . . . . . , x k 1 − 1 · · · x n − m +1 1 we could get ( n − m + 1)!( m − 1)! � n i =1 k i polynomials which � n consist of ( n +1)! i =1 k i monomials m ǫ n − m +1 x ǫ 1 1 · · · x n − m +1 φ ǫ ( x 1 , x 2 , . . . , x n ) where 0 ≤ ǫ 1 ≤ k 1 − 1 . . . 0 ≤ ǫ n − m +1 ≤ ( n − m + 1) k n − m +1

  27. Sylvester step Since the Cayley quotient Φ m only uses m polynomials from the original n +1 polynomials, we can repeat this procedure by C m n +1 times. Altogether we can get n +1 ( n − m + 1)!( m − 1)! � n C m i =1 k i n ( n + 1)! � = ( n − m + 1)! m !( n − m + 1)!( m − 1)! k i i =1 n ( n + 1)! � = k i m i =1 � n n is ( n +1)! polynomials, and the number of monomials x i 1 1 · · · x i n i =1 k i . m Rewrite these polynomials in matrix form, the coefficient matrix � n � n is what we want, and its size is ( n +1)! i =1 k i × ( n +1)! i =1 k i . m m

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend