ensembled multivariate adaptive regression splines
play

Ensembled Multivariate Adaptive Regression Splines Ensembled - PowerPoint PPT Presentation

CO COMPSTAT2010 in Paris S 2010 Ensembled Multivariate Adaptive Regression Splines Ensembled Multivariate Adaptive Regression Splines with Nonnegative Garrote Estimator ith N ti G t E ti t Hiroki Motogaito g Osaka University Osaka


  1. CO COMPSTAT2010 in Paris S 2010 Ensembled Multivariate Adaptive Regression Splines Ensembled Multivariate Adaptive Regression Splines with Nonnegative Garrote Estimator ith N ti G t E ti t Hiroki Motogaito g Osaka University Osaka University M Masashi Goto hi G t Biostatistical Research Association NPO Biostatistical Research Association, NPO. JAPAN JAPAN

  2. Agenda Agenda g • Introduction and motivation • Introduction and motivation • Tree methods Tree methods  Multivariate Adaptive Regression  M lti  Multivariate Adaptive Regression i t Ad ti R i Splines(MARS) Splines(MARS) p ( )  Bagging MARS  Bagging MARS gg g • Our method proposed Our method proposed O th d d  Ensembled MARS with nonnegative garrote  Ensembled MARS with nonnegative garrote • Example and simulation • Example and simulation • Concluding remarks • Concluding remarks g 2

  3. Agenda Agenda g • Introduction and motivation • Introduction and motivation • Tree methods Tree methods  Multivariate Adaptive Regression  M lti  Multivariate Adaptive Regression i t Ad ti R i Splines(MARS) Splines(MARS) p ( )  Bagging MARS  Bagging MARS gg g • Our method proposed Our method proposed O th d d  Ensembled MARS with nonnegative garrote  Ensembled MARS with nonnegative garrote • Example and simulation • Example and simulation • Concluding remarks • Concluding remarks g 3

  4. Introduction and motivation Introduction and motivation Unstable Unstable Less interpretable Less interpretable ˆ f f ( ( x ) ) ˆ x ˆ x f f ( ( x ) ) f f ( ( x ) ) ˆ x ˆ St bili i Stabilizing f ( ) MARS Bagging gg g (Friedman,1991) (Friedman,1991) (Breiman,1996) (Breiman,1996) M ti Motivation ti a new version MARS that has both stability and interpretability i MARS th t h b th t bilit d i t t bilit 4

  5. Agenda Agenda g • Introduction and motivation • Introduction and motivation • Tree methods Tree methods  Multivariate Adaptive Regression  M lti  Multivariate Adaptive Regression i t Ad ti R i Splines(MARS) Splines(MARS) p ( )  Bagging MARS  Bagging MARS gg g • Our method proposed Our method proposed O th d d  Ensembled MARS with nonnegative garrote  Ensembled MARS with nonnegative garrote • Example and simulation • Example and simulation • Concluding remarks • Concluding remarks g 5

  6. M lti Multivariate Adaptive Regression Splines(Friedman,1991) i t Ad ti R i S li (F i d 1991) • Model form • Model form Regression model Regression model Basis function Basis function M M K K    m ˆ ˆ ˆ            f f m B B ( x ( ) ) q q B B ( ( x ) ) [ [ i i ( ( x t )] )] MARS 0 m   m m ( ( k k , , m m ) ) p p ( ( k k , , m m ) ) ( ( k k , , m m ) )  m 1  k 1 • Algorithms • Algorithms  Forward stepwise  Forward stepwise 0.5 0.45 0.4  Increase basis functions  Increase basis functions 0.35  Backward stepwise  Backward stepwise 0.3 0 3 数の値 基底関数 0 25 0.25  P  Prune off ff 基 0 2 0.2 0.15 0.15      Select the best tree  Select the best tree [ [ ( ( x 0 . 5 )] )] [ [ ( ( x 0 . 5 )] )] 0.1     p p p p 0.05 1 x x 0 0 0 0.2 0 2 0.4 0 4 0 6 0.6 0 8 0.8 1 1 0 2 0.2 0.4 0.5 0.6 0 4 x 0 5 0 6 0.8 1 0 8 p p q= 1 and knot t= 0.5 1 d k t t 0 5 6

  7. Bagging (Breiman,1996) Bagging (Breiman 1996) gg g ( , ) • Model form(Bagging MARS) • Model form(Bagging MARS) Regression model Regression model Each tree Each tree 1 1 E f      ˆ ˆ ˆ  f f f ( ( x ) ) f f ( ( x ) ) : MARS model MARS d l Bagging gg g MARS e e E E e e 1 1 • Algorithms • Algorithms Sample p Bootstrap sample Bootstrap sample Bootstrap sample Bootstrap sample Bootstrap sample + +・・・+ +・・・+ ˆ ˆ ˆ ˆ f f 1 x ( ( x ) ) f f 2 x ( ( ) ) f f ( ( x ) ) f f ( x ( ) ) e E ˆ f ( x ) averaging 7 7

  8. Agenda Agenda g • Introduction and motivation • Introduction and motivation • Previous research Pre io s research  Multivariate Adaptive Regression  M lti  Multivariate Adaptive Regression i t Ad ti R i Splines(MARS) Splines(MARS) p ( )  Bagging MARS  Bagging MARS gg g • Our method proposed Our method proposed O th d d  Ensembled MARS with nonnegative garrote  Ensembled MARS with nonnegative garrote • Example and simulation • Example and simulation • Concluding remarks • Concluding remarks g 8

  9. Proposed method Proposed method p Motivation a new version MARS that has both stability and interpretability a new version MARS that has both stability and interpretability Stable, but less interpretable Stable and interpretable 2 3 1 1 1 Selection 4 & Ranking Ranking 5 5 4 4 Typical tree Typical tree nonnegative nonnegative Bagging Bagging Proposed method Proposed method garrote t (B (Breiman,1995) i 1995) 9

  10. Ensembled MARS Ensembled MARS with non-negative garrote ( 1/2 ) ith non negati e garrote ( 1/2 ) g g • Model form • Model form Regression model g Each tree    ˆ ˆ ˆ x E E ˆ   c c ˆ f f c c e f f ( ( x x ) ) f f ( ( x ) ) : MARS model : MARS model , : non-negative garrote estimator : non negative garrote estimator e e e e 1 • Algorithms • Algorithms  Generate Bagging trees  Generate Bagging trees. ˆ c c  Att  Attach h on each tree and estimate using nonnegative h t d ti t i ti e e e e garrote(Breiman,1995). g ( , ) ˆ   ― Select candidate trees(If , the tree is removed). Select candidate trees(If c c 0 0 the tree is removed) ˆ  e    e ˆ E  ˆ f f c e f f ( ( x ) )  Get . e e 1 1 ˆ • • Interpretable structure through typical tree(max Interpretable structure through typical tree(max ) c c ) e 10 10

  11. Ensembled MARS Ensembled MARS with non-negative garrote ( 2/2 ) ith non negati e garrote ( 2/2 ) g g non-negative garrote (Breiman,1995) ti t (B i 1995) N P P          ˆ ˆ P P     ( ( p ) ) 2 2   ˆ { { c } } arg g min ( ( Y c x ) ) c 0 , , c s , subject to , , j , p p 1 1 n n p p p p n n p p p p P P { c }   p 1 n 1 p 1  1 p ˆ     s   1 1 P P where h is the least square estimator and . i th l t ti t d p Ensembled MARS with non-negative garrote g g N N E E E E       ˆ      E 2 { { c c ˆ } } arg arg min min ( ( Y Y c c f f ( ( x x ) ) ) ) c c 0 0 , c c 1 1 , subject to , bj t t e 1 n e e n e e E { { c e c } }    1 1 n 1 1 e 1 1 e 1 1 ˆ ˆ f f x ) ( ( ) where is MARS model. e e n n characteristics h t i ti • All All indicates Bagging. indicates Bagging   c e c 1 1 / / E E  s s s s 1 • Selection of optimal is unnecessary( ). p y( ) 11 11

  12. Agenda Agenda g • Introduction and motivation • Introduction and motivation • Previous research Pre io s research  Multivariate Adaptive Regression  M lti  Multivariate Adaptive Regression i t Ad ti R i Splines(MARS) Splines(MARS) p ( )  Bagging MARS  Bagging MARS gg g • Our method proposed O Our method proposed th d d  Ensembled MARS with non-negative garrote  Ensembled MARS with non negative garrote • Example and simulation • Example and simulation • Concluding remarks • Concluding remarks g 12 12

  13. Literature example Literature example p Prostate cancer data (Stamney et al 1989: Tibshirani 1996) Prostate cancer data (Stamney et al .,1989: Tibshirani,1996) y y • : Level of prostate-specific antigen L l f t t ifi ti  T T x ( ( x , , ,..., x ) ) • : Clinical measures 1 1 8 8 x : Log of tumor size x : Log of tumor size 1 x : Weight of prostate : Weight of prostate 2 2 x : Patient’s age P ti t’ 3 x : Log of benign prostatic hyperplasia amount x : Log of benign prostatic hyperplasia amount 4 4 x : Dummy variables of whether it is metastasizing to seminal vesicle y g 5 5 x : Log of capsular penetration x : Log of capsular penetration 6 x : Gleason score : Gleason score 7 7 x : Gleason score’s ratio of 4 or 5 x Gl ’ ti f 4 5 8  Sample size : 97 N • p 13 13

  14. Literature example Literature example p 0 5 0.5 0.45 0 4 0.4 V CV 0 35 0.35 GC G 0.3 0 25 0.25 0 2 0.2 Ensembled Bagging gg g MARS NNG MARS-NNG MARS MARS 14 14

  15. Literature example Literature example p • Number of trees • Number of trees Bagging Ensembled MARS-NNG 97 97 9 9 • Structure • Structure Bagging Ensembled MARS-NNG x x x x 2 1 2 2 x x x 4 1 Typical tree Typical tree candidates candidates 15 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend