multivariate normal distribution
play

Multivariate Normal Distribution Max Turgeon STAT 4690Applied - PowerPoint PPT Presentation

Multivariate Normal Distribution Max Turgeon STAT 4690Applied Multivariate Analysis Building the multivariate density i random variable. Recall that its density is given by distributed, their joint density is 2 Let Z N (0 , 1) be a


  1. Multivariate Normal Distribution Max Turgeon STAT 4690–Applied Multivariate Analysis

  2. Building the multivariate density i random variable. Recall that its density is given by distributed, their joint density is 2 • Let Z ∼ N (0 , 1) be a standard (univariate) normal 1 − 1 ( ) √ 2 z 2 ϕ ( z ) = 2 π exp . • Now if we take Z 1 , . . . , Z p ∼ N (0 , 1) independently

  3. Building the multivariate density ii defjnite matrix. 3 p 1 − 1 ( ) ∏ √ 2 z 2 ϕ ( z 1 , . . . , z p ) = 2 π exp i i =1 p ( ) 1 − 1 ∑ √ z 2 = 2 π ) p exp i 2 ( i =1 1 − 1 ( ) 2 z T z = √ 2 π ) p exp , ( where z = ( z 1 , . . . , z p ) . • More generally, let µ ∈ R p and let Σ be a p × p positive

  4. Building the multivariate density iii last lecture that • To get the density, we need to compute the inverse transformation: 4 • Let Σ = LL T be the Cholesky decomposition for Σ . • Let Z = ( Z 1 , . . . , Z p ) be a standard (multivariate) normal random vector, and defjne Y = L Z + µ . We know from • E ( Y ) = LE ( Z ) + µ = µ ; • Cov( Y ) = L Cov( Z ) L T = Σ . Z = L − 1 ( Y − µ ) .

  5. Building the multivariate density iv 5 • The Jacobian matrix J for this transformation is simply L − 1 , and therefore | det( J ) | = | det( L − 1 ) | = det( L ) − 1 ( L is p.d. ) − 1 √ = det(Σ) = det(Σ) − 1 / 2 .

  6. Building the multivariate density v • Plugging this into the formula for the density of a 6 transformation, we get 1 det(Σ) 1 / 2 ϕ ( L − 1 ( y − µ )) f ( y 1 , . . . , y p ) = ( )) 1 1 − 1 ( 2( L − 1 ( y − µ )) T L − 1 ( y − µ ) √ = 2 π ) p exp det(Σ) 1 / 2 ( 1 − 1 ( ) 2( y − µ ) T ( LL T ) − 1 ( y − µ ) √ = 2 π ) p exp det(Σ) 1 / 2 ( 1 − 1 ( ) 2( y − µ ) T Σ − 1 ( y − µ ) = exp . √ (2 π ) p | Σ |

  7. Example i set.seed (123) Z <- matrix ( rnorm (n * p), ncol = p) mu <- c (1, 2) L <- t ( chol (Sigma)) 7 n <- 1000; p <- 2 Sigma <- matrix ( c (1, 0.5, 0.5, 1), ncol = 2)

  8. Example ii Y <- L %*% t (Z) + mu colMeans (Y) ## [1] 1.016128 2.044840 cov (Y) ## [,1] [,2] ## [1,] 0.9834589 0.5667194 ## [2,] 0.5667194 1.0854361 8 Y <- t (Y)

  9. Example iii library (tidyverse) data.frame () %>% ggplot ( aes (X1, X2)) + geom_density_2d () 9 Y %>%

  10. Example iv 10 4 3 X2 2 1 0 −1 0 1 2 3 X1

  11. Example v library (mvtnorm) colMeans (Y) ## [1] 0.9812102 1.9829380 cov (Y) 11 Y <- rmvnorm (n, mean = mu, sigma = Sigma)

  12. Example vi ## [,1] [,2] ## [1,] 0.9982835 0.4906990 ## [2,] 0.4906990 0.9489171 Y %>% data.frame () %>% ggplot ( aes (X1, X2)) + geom_density_2d () 12

  13. Example vii 13 4 3 X2 2 1 0 −1 0 1 2 3 X1

  14. Other characterizations There are at least two other ways to defjne the multivariate random distribution: multivariate normal distribution if and only if every linear multivariate normal distribution if and only if its distribution maximises entropy over the class of random 14 1. A p -dimensional random vector Y is said to have a combination of Y has a univariate normal distribution. 2. A p -dimensional random vector Y is said to have a vectors with fjxed mean µ and fjxed covariance matrix Σ and support over R p .

  15. Useful properties i ; . 15 distributed; that is, write • If Y ∼ N p ( µ, Σ) , A is a q × p matrix, and b ∈ R q , then A Y + b ∼ N q ( Aµ + b, A Σ A T ) . • If Y ∼ N p ( µ, Σ) then all subsets of Y are normally ( ) ( ) µ 1 Y 1 • Y = , µ = Y 2 µ 2 ( ) Σ 11 Σ 12 • Σ = Σ 21 Σ 22 • Then Y 1 ∼ N r ( µ 1 , Σ 11 ) and Y 2 ∼ N p − r ( µ 2 , Σ 22 ) .

  16. Useful properties ii • Assume the same partition as above. Then the following are equivalent: 16 • Y 1 and Y 2 are independent; • Σ 12 = 0 ; • Cov( Y 1 , Y 2 ) = 0 .

  17. Exercise (J&W 4.3) Which of the following random variables are independent? Explain. 17 Let ( Y 1 , Y 2 , Y 3 ) ∼ N 3 ( µ, Σ) with µ = (3 , 1 , 4) and   1 − 2 0 Σ =  − 2 5 0   .    0 0 2 1. Y 1 and Y 2 . 2. Y 2 and Y 3 . 3. ( Y 1 , Y 2 ) and Y 3 . 4. 0 . 5( Y 1 + Y 2 ) and Y 3 . 5. Y 2 and Y 2 − 5 2 Y 1 − Y 3 .

  18. Conditional Normal Distributions i ; . 18 • Theorem : Let Y ∼ N p ( µ, Σ) , where ( ) ( ) Y 1 µ 1 • Y = , µ = µ 2 Y 2 ( ) Σ 11 Σ 12 • Σ = Σ 21 Σ 22 • Then the conditional distribution of Y 1 given Y 2 = y 2 is multivariate normal N r ( µ 1 | 2 , Σ 1 | 2 ) , where • µ 1 | 2 = µ 1 + Σ 12 Σ − 1 22 ( y 2 − µ 2 ) • Σ 1 | 2 = Σ 11 + Σ 12 Σ − 1 22 Σ 21 .

  19. Conditional Normal Distributions ii ; . 19 • Corrolary : Let Y 2 ∼ N p − r ( µ 2 , Σ 22 ) and assume that Y 1 given Y 2 = y 2 is multivariate normal N r ( Ay 2 + b, Ω) , where Ω does not depend on y 2 . Then    Y 1  ∼ N p ( µ, Σ) , where Y = Y 2 ( ) Aµ 2 + b • µ = µ 2 ( Ω + A Σ 22 A T ) A Σ 22 • Σ = Σ 22 A T Σ 22

  20. Exercise 20 • Let Y 2 ∼ N 1 (0 , 1) and assume      y 2 + 1  , I 2  . Y 1 | Y 2 = y 2 ∼ N 2  2 y 2 Find the joint distribution of ( Y 1 , Y 2 ) .

  21. Another important result i with mean 0 and covariance matrix standard normal random variables. • This can be seen as a generalization of the univariate result 21 • Let Y ∼ N p ( µ, Σ) , and let Σ = LL T be the Cholesky decomposition of Σ . • We know that Z = L − 1 ( Y − µ ) is normally distributed, Cov( Z ) = L − 1 Σ( L − 1 ) T = I p . • Therefore ( Y − µ ) T Σ − 1 ( Y − µ ) is the sum of squared • In other words, ( Y − µ ) T Σ − 1 ( Y − µ ) ∼ χ 2 ( p ) . ) 2 ∼ χ 2 (1) . ( X − µ σ

  22. Another important result ii • From this, we get a result about the probability that a multivariate normal falls within an ellipse : • We can use this to construct a confjdence region around the sample mean. 22 ( ) ( Y − µ ) T Σ − 1 ( Y − µ ) ≤ χ 2 ( α ; p ) P = 1 − α.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend