multiparameter models cont
play

Multiparameter models (cont.) Dr. Jarad Niemi STAT 544 - Iowa State - PowerPoint PPT Presentation

Multiparameter models (cont.) Dr. Jarad Niemi STAT 544 - Iowa State University February 21, 2019 Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 1 / 20 Outline Multinomial Multivariate normal Unknown mean


  1. Multiparameter models (cont.) Dr. Jarad Niemi STAT 544 - Iowa State University February 21, 2019 Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 1 / 20

  2. Outline Multinomial Multivariate normal Unknown mean Unknown mean and covariance In the process, we’ll introduce the following distributions Multinomial Dirichlet Multivariate normal Inverse Wishart (and Wishart) normal-inverse Wishart distribution Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 2 / 20

  3. Multinomial Motivating examples Multivariate count data: Item-response (Likert scale) Voting Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 3 / 20

  4. Multinomial Multinomial distribution Suppose there are K categories and each individual independently chooses category k with probability π k such that � K k =1 π k = 1 . Let Y k ∈ { 0 , 1 , . . . , n } be the number of individuals who choose category k with n = � K k =1 Y k being the total number of individuals. Then Y = ( Y 1 , . . . , Y K ) has a multinomial distribution, i.e. Y ∼ Mult ( n, π ) , with probability mass function (pmf) k π y k � k p ( y ) = n ! y k ! . k =1 Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 4 / 20

  5. Multinomial Properties of the multinomial distribution The multinomial distribution with pmf: k π y k � k p ( y ) = n ! y k ! k =1 has the following properties: E [ Y k ] = nπ k V ar [ Y k ] = nπ k (1 − π k ) Cov [ Y k , Y k ′ ] = − nπ k π k ′ for k � = k ′ Marginally, each component of a multinomial distribution is a binomial distribution with Y k ∼ Bin ( n, π k ) . Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 5 / 20

  6. Multinomial Dirichlet distribution Let π = ( π 1 , . . . , π K ) have a Dirichlet distribution, i.e. π ∼ Dir ( a ) , with concentration parameter a = ( a 1 , . . . , a K ) where a k > 0 for all k . The probability density function (pdf) for π is K 1 � π a k − 1 p ( π ) = k Beta ( a ) k =1 with � K k =1 π k = 1 and Beta ( a ) is the beta function, i.e. � K k =1 Γ( a k ) Beta ( a ) = . Γ( � K k =1 a k ) Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 6 / 20

  7. Multinomial Properties of the Dirichlet distribution The Dirichlet distribution with pdf K � π a k − 1 p ( π ) ∝ k k =1 has the following properties (where a 0 = � K k =1 a k ): E [ π k ] = a k a 0 V ar [ π k ] = a k ( a 0 − a k ) a 2 0 ( a 0 +1) − a k a k ′ Cov [ π k , π k ′ ] = a 2 0 ( a 0 +1) Marginally, each component of a Dirichlet distribution is a beta distribution with π k ∼ Be ( a k , a 0 − a k ) . Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 7 / 20

  8. Multinomial Bayesian inference The conjugate prior for a multinomial distribution, i.e. Y ∼ Mult ( n, π ) , with unknown probability vector π is a Dirichlet distribution. The Jeffreys prior is a Dirichlet distribution with a k = 0 . 5 for all k . Some argue that for large K , this prior will put too much mass on rare categories and would suggest the Dirichlet prior with a k = 1 /K for all k . The posterior under a Dirichlet prior is p ( π | y ) ∝ p ( y | π ) p ( π ) �� K � �� K � k =1 π y k k =1 π a k − 1 ∝ k k = � K k =1 π a k + y k − 1 k Thus π | y ∼ Dir ( a + y ) . Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 8 / 20

  9. Multivariate normal Multivariate normal distribution Let Y = ( Y 1 , . . . , Y K ) have a multivariate normal distribution, i.e. Y ∼ N K ( µ, Σ) with mean µ and variance-covariance matrix Σ . The probability density function (pdf) for Y is � − 1 � p ( y ) = (2 π ) − k/ 2 | Σ | − 1 / 2 exp 2( y − µ ) ⊤ Σ − 1 ( y − µ ) Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 9 / 20

  10. Multivariate normal Bivariate normal contours Contours of a bivariate normal with correlation of 0.8 3 8 7 5 6 9 10 3 2 1 1 0 −1 −2 2 10 4 −3 6 7 8 9 5 −3 −2 −1 0 1 2 3 Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 10 / 20

  11. Multivariate normal Properties of the multivariate normal distribution The multivariate normal distribution has the following properties: For any subvector Y k of Y where k ⊂ { 1 , 2 , . . . , K } with | k | = d , we have Y k ∼ N d ( µ k , Σ k , k ) where µ k contains the corresponding elements from µ and Σ k , k is the submatrix of Σ constructed by extracting rows k and columns k . Cov [ Y k , Y k ′ ] = Σ k , k ′ is the submatrix of Σ constructed by extracting rows k and columns k ′ . Conditional distributions are also normal, i.e. for k ∩ k ′ = ∅ � � �� � � �� Y k µ k Σ k , k Σ k , k ′ ∼ N , Y k ′ µ k ′ Σ k ′ , k Σ k ′ , k ′ then � � µ k + Σ k , k ′ Σ − 1 k ′ , k ′ ( y k ′ − µ k ′ ) , Σ k , k − Σ k , k ′ Σ − 1 Y k | Y k ′ = y k ′ ∼ N k ′ , k ′ Σ k ′ , k . Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 11 / 20

  12. Multivariate normal Representing independence in a multivariate normal Let Y ∼ N ( µ, Σ) with precision matrix Ω = Σ − 1 . If Σ k,k ′ = 0 , then Y k and Y k ′ are independent of each other. If Ω k,k ′ = 0 , then Y k and Y k ′ are conditionally independent of each other given Y j for j � = k, k ′ . Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 12 / 20

  13. Multivariate normal Unknown mean Default inference with an unknown mean ind Let Y i ∼ N K ( µ, S ) with default prior p ( µ ) ∝ 1 where Y i = ( Y i 1 , . . . , Y iK ) , then p ( µ | y ) ∝ p ( y | µ ) p ( µ ) � n − 1 i =1 ( y i − µ ) ⊤ S − 1 ( y i − µ ) � � ∝ exp 2 − 1 � 2 tr ( S − 1 S 0 ) � = exp where n � ( y i − µ )( y i − µ ) ⊤ . S 0 = i =1 This posterior is proper if n ≥ 1 (text has a typo) and, in that case, is � � y, 1 µ | y ∼ N K nS . where this y = ( y 1 , . . . , y K ) has elements n y k = 1 � y ik . n i =1 Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 13 / 20

  14. Multivariate normal Unknown mean Conjugate inference with an unknown mean ind ∼ N ( µ, S ) with conjugate prior µ ∼ N K ( m, C ) Let Y i p ( µ | y ) ∝ p ( y | µ ) p ( µ ) − 1 � n � i =1 ( y i − µ ) ⊤ S − 1 ( y i − µ ) � ∝ exp 2 − 1 2 µ − m ) ⊤ C − 1 ( µ − m ) � � × exp − 1 � 2 ( µ − m ′ ) ⊤ C ′− 1 ( µ − m ′ ) � = exp and thus µ | y ∼ N ( m ′ , C ′ ) where C − 1 + nS − 1 � − 1 C ′ � = m ′ = C ′ � C − 1 m + nS − 1 y � . Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 14 / 20

  15. Multivariate normal Unknown mean Inverse Wishart distribution Let the K × K matrix Σ have an inverse Wishart distribution, i.e. Σ ∼ IW ( v, W − 1 ) , with degrees of freedom v > K − 1 and positive definite scale matrix W . The pdf for Σ is � − 1 W Σ − 1 �� p (Σ) ∝ | Σ | − ( v + K +1) / 2 exp � 2 tr . Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 15 / 20

  16. Multivariate normal Unknown mean Properties of the inverse Wishart distribution The inverse Wishart distribution with pdf � − 1 W Σ − 1 �� p (Σ) ∝ | Σ | − ( v + K +1) / 2 exp � 2 tr . has the following properties: E [Σ] = ( v − K − 1) − 1 W for v > K + 1 . Marginally, σ 2 k = Σ kk ∼ Inv − χ 2 ( v, W kk ) . If a K × K matrix Σ − 1 has a Wishart distribution, i.e. Σ − 1 ∼ Wishart ( v, W ) , then Σ ∼ IW ( v, W − 1 ) . Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 16 / 20

  17. Multivariate normal Unknown mean Normal-inverse Wishart distribution A multivariate generalization of the normal-scaled-inverse- χ 2 distribution is the normal-inverse Wishart distribution. For a vector µ ∈ R K and K × K matrix Σ , the normal-inverse Wishart distribution is µ | Σ ∼ N ( m, Σ /c ) ∼ IW ( v, W − 1 ) Σ The marginal distribution for µ , i.e. � p ( µ ) = p ( µ | Σ) p (Σ) d Σ , is a multivariate t-distribution, i.e. µ ∼ t v − K +1 ( m, W/ [ c ( v − K + 1)]) . Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 17 / 20

  18. Multivariate normal Unknown mean and covariance Conjugate inference with unknown mean and covariance ind Let Y i ∼ N ( µ, Σ) with conjugate prior Σ ∼ IW ( v, W − 1 ) µ | Σ ∼ N ( m, Σ /c ) which has pdf � − 1 2 tr ( W Σ − 1 ) − c � p ( µ, Σ) ∝ | Σ | − (( v + K ) / 2+1) exp 2( µ − m ) ⊤ Σ − 1 ( µ − m ) . The posterior is a normal-inverse Wishart with parameters c ′ = c + n v ′ = v + n = c c ′ m + n m ′ c ′ y = W + S + cn W ′ c ′ ( y − m )( y − m ) ⊤ where n � ( y i − y )( y i − y ) ⊤ . S = i =1 Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 21, 2019 18 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend