harmonic rayleigh ritz for the multiparameter eigenvalue
play

Harmonic Rayleigh-Ritz for the multiparameter eigenvalue problem Bor - PowerPoint PPT Presentation

Harmonic Rayleigh-Ritz for the multiparameter eigenvalue problem Bor Plestenjak Department of Mathematics University of Ljubljana This is joint work with Michiel Hochstenbach Harrachov, 2007 1/21 Outline Multiparameter eigenvalue problem


  1. Harmonic Rayleigh-Ritz for the multiparameter eigenvalue problem Bor Plestenjak Department of Mathematics University of Ljubljana This is joint work with Michiel Hochstenbach Harrachov, 2007 1/21

  2. Outline • Multiparameter eigenvalue problem (MEP) • Jacobi–Davidson type methods for MEP • Harmonic Rayleigh–Ritz for GEP and MEP • Numerical examples • Conclusions Harrachov, 2007 2/21

  3. Two-parameter eigenvalue problem • Two-parameter eigenvalue problem: A 1 x = λB 1 x + µC 1 x ( MEP ) A 2 y = λB 2 y + µC 2 y, where A i , B i , C i are n × n matrices, λ, µ ∈ C , x, y ∈ C n • Eigenvalue: a pair ( λ, µ ) that satisfies (MEP) for nonzero x and y . • Eigenvector: the tensor product x ⊗ y . • Goal: compute eigenvalues ( λ, µ ) close to a target ( σ, τ ) and eigenvectors x ⊗ y . Harrachov, 2007 3/21

  4. Tensor product approach A 1 x = λB 1 x + µC 1 x ( MEP ) A 2 y = λB 2 y + µC 2 y • On C n ⊗ C n of the dimension n 2 we define ∆ 0 = B 1 ⊗ C 2 − C 1 ⊗ B 2 ∆ 1 = A 1 ⊗ C 2 − C 1 ⊗ A 2 ∆ 2 = B 1 ⊗ A 2 − A 1 ⊗ B 2 . • MEP is equivalent to a coupled GEP ∆ 1 z = λ ∆ 0 z ( ∆ ) ∆ 2 z = µ ∆ 0 z, where z = x ⊗ y . • MEP is nonsingular ⇐ ⇒ ∆ 0 is nonsingular. • ∆ − 1 0 ∆ 1 and ∆ − 1 0 ∆ 2 commute. Harrachov, 2007 4/21

  5. Right definite problem ∆ 0 = B 1 ⊗ C 2 − C 1 ⊗ B 2 A 1 x = λB 1 x + µC 1 x ∆ 1 z = λ ∆ 0 z ( MEP ) ∆ 1 = A 1 ⊗ C 2 − C 1 ⊗ A 2 ( ∆ ) A 2 y = λB 2 y + µC 2 y ∆ 2 z = µ ∆ 0 z ∆ 2 = B 1 ⊗ A 2 − A 1 ⊗ B 2 MEP is right definite when A i , B i , C i are Hermitian and ∆ 0 is positive definite. Atkinson (1972): ☞ ☞ ☞ x ∗ B 1 x x ∗ C 1 x ☞ ⇒ ( x ⊗ y ) ∗ ∆ 0 ( x ⊗ y ) = ☞ ☞ ∆ 0 positive definite ⇐ ☞ > 0 for x, y � = 0 . ☞ y ∗ B 2 y y ∗ C 2 y Harrachov, 2007 5/21

  6. Right definite problem ∆ 0 = B 1 ⊗ C 2 − C 1 ⊗ B 2 A 1 x = λB 1 x + µC 1 x ∆ 1 z = λ ∆ 0 z ( MEP ) ∆ 1 = A 1 ⊗ C 2 − C 1 ⊗ A 2 ( ∆ ) A 2 y = λB 2 y + µC 2 y ∆ 2 z = µ ∆ 0 z ∆ 2 = B 1 ⊗ A 2 − A 1 ⊗ B 2 MEP is right definite when A i , B i , C i are Hermitian and ∆ 0 is positive definite. Atkinson (1972): ☞ ☞ ☞ x ∗ B 1 x x ∗ C 1 x ☞ ⇒ ( x ⊗ y ) ∗ ∆ 0 ( x ⊗ y ) = ☞ ☞ ∆ 0 positive definite ⇐ ☞ > 0 for x, y � = 0 . ☞ y ∗ B 2 y y ∗ C 2 y If MEP is right definite then • eigenpairs are real • there exist n 2 linearly independent eigenvectors • eigenvectors of distinct eigenvalues are ∆ 0 -orthogonal, i.e., ( x 1 ⊗ y 1 ) T ∆ 0 ( x 2 ⊗ y 2 )=0 Harrachov, 2007 5/21

  7. Numerical methods First option: standard algorithms for explicitly computed matrices ∆ : ∆ 0 = B 1 ⊗ C 2 − C 1 ⊗ B 2 A 1 x = λB 1 x + µC 1 x ∆ 1 z = λ ∆ 0 z ( MEP ) ∆ 1 = A 1 ⊗ C 2 − C 1 ⊗ A 2 ( ∆ ) A 2 y = λB 2 y + µC 2 y ∆ 2 z = µ ∆ 0 z ∆ 2 = B 1 ⊗ A 2 − A 1 ⊗ B 2 Algorithms that work with matrices A i , B i , C i : • Blum, Curtis, Geltner (1978), and Browne, Sleeman (1982): gradient method, • Bohte (1980): Newton’s method for eigenvalues, • Ji, Jiang, Lee (1992): Generalized Rayleigh Quotient Iteration. • Continuation method: – Shimasaki (1995): for a special class of RD problems, – P. (1999): for RD problems, Tensor Rayleigh Quotient Iteration, – P. (2000): for weakly elliptic problems. • Jacobi-Davidson type methods. – Hochstenbach, P. (2002): for RD problems, – Hochstenbach, Koˇ sir, P. (2005): for general nonsingular MEP, – Hochstenbach, P. (2007): JD with harmonic extraction. Harrachov, 2007 6/21

  8. Jacobi–Davidson method Subspace methods compute eigenpairs from low dimensional subspaces. They work as follows: • Extraction: We compute an approximation to an eigenpair from a given search subspace. Usually, we solve the same type of eigenvalue problem as the original one, but of a smaller dimension. • Expansion: After each step we expand the subspace by a new direction. As the search subspace grows the eigenpair approximations should converge to an eigenpair. Jacobi–Davidson method is a subspace method where: • a new direction to the subspace is orthogonal or oblique to the last chosen Ritz vector, • approximate solutions of certain correction equations are used for expansion. JD method can be efficiently generalized for two-parameter eigenvalue problems, while this is not clear for subspace methods based on Krylov subspaces. Harrachov, 2007 7/21

  9. JD-like method for the right definite case: extraction Ritz–Galerkin conditions: search spaces = test spaces: u ∈ U k , v ∈ V k ( A 1 − σB 1 − τC 1 ) u ⊥ U k ( A 2 − σB 2 − τC 2 ) v ⊥ V k ⇒ projected right definite two-parameter eigenvalue problem U T k A 1 U k c = σU T k B 1 U k c + τU T k C 1 U k c V T k A 2 V k d = σV T k B 2 V k d + τV T k C 2 V k d Ritz vectors: u = U k c , v = V k d for c, d ∈ R k Ritz value: ( σ, τ ) , Ritz pair: (( σ, τ ) , u ⊗ v ) Will not discuss the correction equation and the deflation. Works well for exterior eigenvalues. Harrachov, 2007 8/21

  10. Two-sided JD-like method for a general problem: extraction Petrov–Galerkin conditions: search spaces u i ∈ U ik , test spaces v i ∈ V ik ( A 1 − σB 1 − τC 1 ) u 1 ⊥ V 1 k ( A 2 − σB 2 − τC 2 ) u 2 ⊥ V 2 k , ⇒ projected two-parameter eigenvalue problem V ∗ σV ∗ 1 k B 1 U 1 k c 1 + τV ∗ 1 k A 1 U 1 k c 1 = 1 k C 1 U 1 k c 1 V ∗ σV ∗ 2 k B 2 U 2 k c 2 + τV ∗ 2 k A 2 U 2 k c 2 = 2 k C 2 U 2 k c 2 , where u i = U ik c i � = 0 for i = 1 , 2 and σ, τ ∈ C . Petrov vectors: u i = U ik c i , v i = V ik d i , c i , d i ∈ C k Petrov value: ( σ, τ ) , Petrov triple: (( σ, τ ) , u 1 ⊗ u 2 , v 1 ⊗ v 2 ) Usually performs better than the one-sided method. Works well for exterior eigenvalues, is less favorable for interior ones. Harrachov, 2007 9/21

  11. Rayleigh–Ritz for GEP For a GEP Ax = λBx we want an approximate eigenpair ( θ, u ) , where u is in a given search subspace U k and θ is close to the given target τ ∈ C . Standard Ritz–Galerkin condition Au − θBu ⊥ U k leads to U ∗ k AU k c = θ U ∗ k BU k c, where the columns of U k form an orthonormal basis for U k and c ∈ C k . Harrachov, 2007 10/21

  12. Rayleigh–Ritz for GEP For a GEP Ax = λBx we want an approximate eigenpair ( θ, u ) , where u is in a given search subspace U k and θ is close to the given target τ ∈ C . Standard Ritz–Galerkin condition r := Au − θBu ⊥ U k leads to U ∗ k AU k c = θ U ∗ k BU k c, where the columns of U k form an orthonormal basis for U k and c ∈ C k . For interior eigenvalues, even for a Ritz value θ ≈ τ , � r � can be large and the approximate eigenvector may be poor. As a remedy, the harmonic Rayleigh–Ritz was proposed: • standard eigenproblem: Morgan (1991), Paige, Parlett, Van der Vorst (1995), • GEP: Fokkema, Sleijpen, Van der Vorst (1998), Stewart (2001). Assuming A − τB is nonsingular we consider a spectral transformation ( A − τB ) − 1 Bx = ( λ − τ ) − 1 x. The interior eigenvalues λ ≈ τ are exterior eigenvalues of ( A − τB ) − 1 B . Harrachov, 2007 10/21

  13. Harmonic Rayleigh–Ritz for GEP To avoid working with ( A − τB ) − 1 we impose a Petrov–Galerkin condition ( A − τB ) − 1 Bu − ( θ − τ ) − 1 u ⊥ ( A − τB ) ∗ ( A − τB ) U k , or, equivalently, Au − θBu = ( A − τB ) u − ( θ − τ ) Bu ⊥ ( A − τB ) U k , leading to the projected eigenproblem U ∗ k ( A − τB ) ∗ ( A − τB ) U k c = ( θ − τ ) U ∗ k ( A − τB ) ∗ BU k c. This approach has two motivations: • it retrieves exact eigenvectors in the search space; • a harmonic Ritz pair ( θ, u ) satisfies (Stewart (2001)) � Au − τBu � ≤ | θ − τ | · � Bu � ≤ | θ − τ | · � BU k � . Harrachov, 2007 11/21

  14. Harmonic Rayleigh–Ritz for two-parameter eigenvalue problem GEP: Ax = λBx subspace is U k , target is τ A 1 x = λB 1 x + µC 1 x MEP: A 2 y = λB 2 y + µC 2 y subspace is U k ⊗ V k , target is ( σ, τ ) Harrachov, 2007 12/21

  15. Harmonic Rayleigh–Ritz for two-parameter eigenvalue problem GEP: Ax = λBx subspace is U k , target is τ Rayleigh–Ritz: Au − θBu ⊥ U k A 1 x = λB 1 x + µC 1 x MEP: A 2 y = λB 2 y + µC 2 y subspace is U k ⊗ V k , target is ( σ, τ ) Harrachov, 2007 12/21

  16. Harmonic Rayleigh–Ritz for two-parameter eigenvalue problem GEP: Ax = λBx subspace is U k , target is τ Rayleigh–Ritz: Au − θBu ⊥ U k A 1 x = λB 1 x + µC 1 x MEP: A 2 y = λB 2 y + µC 2 y subspace is U k ⊗ V k , target is ( σ, τ ) ( A 1 − θB 1 − ηC 1 ) u ⊥ U k Rayleigh–Ritz: ( A 2 − θB 2 − ηC 2 ) v ⊥ V k Harrachov, 2007 12/21

  17. Harmonic Rayleigh–Ritz for two-parameter eigenvalue problem GEP: Ax = λBx subspace is U k , target is τ Rayleigh–Ritz: Au − θBu ⊥ U k ( A − τB ) − 1 Bx = ( λ − τ ) − 1 x Spectral transformation: A 1 x = λB 1 x + µC 1 x MEP: A 2 y = λB 2 y + µC 2 y subspace is U k ⊗ V k , target is ( σ, τ ) ( A 1 − θB 1 − ηC 1 ) u ⊥ U k Rayleigh–Ritz: ( A 2 − θB 2 − ηC 2 ) v ⊥ V k Harrachov, 2007 12/21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend