on singular multiparameter eigenvalue problems
play

On singular multiparameter eigenvalue problems Bor Plestenjak - PowerPoint PPT Presentation

On singular multiparameter eigenvalue problems Bor Plestenjak Department of Mathematics University of Ljubljana Joint work with Andrej Muhi c Cortona, September 15-19, 2008 1/23 Outline Two-parameter eigenvalue problem (2EP)


  1. On singular multiparameter eigenvalue problems Bor Plestenjak Department of Mathematics University of Ljubljana Joint work with Andrej Muhiˇ c Cortona, September 15-19, 2008 1/23

  2. Outline • Two-parameter eigenvalue problem (2EP) • Singular two-parameter eigenvalue problem • Quadratic two-parameter eigenvalue problem (Q2EP) • An algorithm for the extraction of the common regular part of two matrix pencils • Examples and possible applications Cortona, September 15-19, 2008 2/23

  3. Two-parameter eigenvalue problem • Two-parameter eigenvalue problem: ( A 1 + λB 1 + µC 1 ) x = 0 ( 2EP ) ( A 2 + λB 2 + µC 2 ) y = 0 , where A i , B i , C i are n × n matrices, λ, µ ∈ C , x, y ∈ C n . • Eigenvalue: a pair ( λ, µ ) that satisfies (2EP) for nonzero x and y . • Eigenvector: the tensor product x ⊗ y . • There are n 2 eigenvalues, which are solutions of det ( A 1 + λB 1 + µC 1 ) = 0 det ( A 2 + λB 2 + µC 2 ) = 0 . Cortona, September 15-19, 2008 3/23

  4. Tensor product approach ( A 1 + λB 1 + µC 1 ) x = 0 ( 2EP ) ( A 2 + λB 2 + µC 2 ) y = 0 • On C n ⊗ C n we define n 2 × n 2 matrices ∆ 0 = B 1 ⊗ C 2 − C 1 ⊗ B 2 ∆ 1 = C 1 ⊗ A 2 − A 1 ⊗ C 2 ∆ 2 = A 1 ⊗ B 2 − B 1 ⊗ A 2 . • 2EP is equivalent to a coupled GEP ∆ 1 z = λ ∆ 0 z ( ∆ ) ∆ 2 z = µ ∆ 0 z, where z = x ⊗ y . • 2EP is nonsingular ⇐ ⇒ ∆ 0 is nonsingular • ∆ − 1 0 ∆ 1 and ∆ − 1 0 ∆ 2 commute. Cortona, September 15-19, 2008 4/23

  5. Numerical methods ∆ 0 = B 1 ⊗ C 2 − C 1 ⊗ B 2 ( A 1 + λB 1 + µC 1 ) x = 0 ∆ 1 z = λ ∆ 0 z ( 2EP ) ∆ 1 = C 1 ⊗ A 2 − A 1 ⊗ C 2 ( ∆ ) ( A 2 + λB 2 + µC 2 ) y = 0 ∆ 2 z = µ ∆ 0 z ∆ 2 = A 1 ⊗ B 2 − B 1 ⊗ A 2 sir, P. (2005): QZ applied to (∆) . Time complexity: O ( n 6 ) . Hochstenbach, Koˇ Cortona, September 15-19, 2008 5/23

  6. Numerical methods ∆ 0 = B 1 ⊗ C 2 − C 1 ⊗ B 2 ( A 1 + λB 1 + µC 1 ) x = 0 ∆ 1 z = λ ∆ 0 z ( 2EP ) ∆ 1 = C 1 ⊗ A 2 − A 1 ⊗ C 2 ( ∆ ) ( A 2 + λB 2 + µC 2 ) y = 0 ∆ 2 z = µ ∆ 0 z ∆ 2 = A 1 ⊗ B 2 − B 1 ⊗ A 2 sir, P. (2005): QZ applied to (∆) . Time complexity: O ( n 6 ) . Hochstenbach, Koˇ Algorithms that work directly with matrices A i , B i , C i : • Gradient method: Blum, Curtis, Geltner (1978), Browne, Sleeman (1982) • Newton’s method for eigenvalues: Bohte (1980) • Generalized Rayleigh Quotient Iteration: Ji, Jiang, Lee (1992) • Jacobi-Davidson: – Hochstenbach, P. (2002) for right definite 2EP, – Hochstenbach, Koˇ sir, P. (2005) for nonsingular 2EP, – Hochstenbach, P. (2008) - harmonic extraction Cortona, September 15-19, 2008 5/23

  7. Singular 2EP ∆ 0 = B 1 ⊗ C 2 − C 1 ⊗ B 2 ( A 1 + λB 1 + µC 1 ) x = 0 ∆ 1 z = λ ∆ 0 z ( 2EP ) ∆ 1 = C 1 ⊗ A 2 − A 1 ⊗ C 2 ( ∆ ) ( A 2 + λB 2 + µC 2 ) y = 0 ∆ 2 z = µ ∆ 0 z ∆ 2 = A 1 ⊗ B 2 − B 1 ⊗ A 2 2EP is singular iff ∆ 0 is singular. For singular 2EP, there are no general results linking the eigenvalues of (2EP) and (∆) . We know: ( A 1 + λB 1 + µC 1 ) x = 0 ∆ 1 ( x ⊗ y ) = λ ∆ 0 ( x ⊗ y ) = ⇒ ( A 2 + λB 2 + µC 2 ) y = 0 ∆ 2 ( x ⊗ y ) = µ ∆ 0 ( x ⊗ y ) Cortona, September 15-19, 2008 6/23

  8. Finite regular eigenvalues A pair ( λ, µ ) is a finite regular eigenvalue of (2EP) if: rank ( A i + λB i + µC i ) < max ( s,t ) ∈ C 2 rank ( A i + sB i + tC i ) for i = 1 , 2 . Cortona, September 15-19, 2008 7/23

  9. Finite regular eigenvalues A pair ( λ, µ ) is a finite regular eigenvalue of (2EP) if: rank ( A i + λB i + µC i ) < max ( s,t ) ∈ C 2 rank ( A i + sB i + tC i ) for i = 1 , 2 . A pair ( λ, µ ) is a finite regular eigenvalue of matrix pencils ∆ 1 − λ ∆ 0 and ∆ 2 − µ ∆ 0 if: 1. rank (∆ 1 − λ ∆ 0 ) < max s ∈ C rank (∆ 1 − s ∆ 0 ) , 2. rank (∆ 2 − µ ∆ 0 ) < max t ∈ C rank (∆ 2 − t ∆ 0 ) , 3. there exists a common eigenvector z in regular parts of ∆ 1 − λ ∆ 0 and ∆ 2 − µ ∆ 0 such that (∆ 1 − λ ∆ 0 ) z = 0 , (∆ 2 − µ ∆ 0 ) z = 0 . Cortona, September 15-19, 2008 7/23

  10. Finite regular eigenvalues A pair ( λ, µ ) is a finite regular eigenvalue of (2EP) if: rank ( A i + λB i + µC i ) < max ( s,t ) ∈ C 2 rank ( A i + sB i + tC i ) for i = 1 , 2 . A pair ( λ, µ ) is a finite regular eigenvalue of matrix pencils ∆ 1 − λ ∆ 0 and ∆ 2 − µ ∆ 0 if: 1. rank (∆ 1 − λ ∆ 0 ) < max s ∈ C rank (∆ 1 − s ∆ 0 ) , 2. rank (∆ 2 − µ ∆ 0 ) < max t ∈ C rank (∆ 2 − t ∆ 0 ) , 3. there exists a common eigenvector z in regular parts of ∆ 1 − λ ∆ 0 and ∆ 2 − µ ∆ 0 such that (∆ 1 − λ ∆ 0 ) z = 0 , (∆ 2 − µ ∆ 0 ) z = 0 . Conjecture. Finite regular eigenvalues of (2EP) = finite regular eigenvalues of (∆) . Cortona, September 15-19, 2008 7/23

  11. Quadratic 2EP ( A 1 + λB 1 + µC 1 + λ 2 D 1 + λµE 1 + µ 2 F 1 ) x = 0 ( Q2EP ) ( A 2 + λB 2 + µC 2 + λ 2 D 2 + λµE 2 + µ 2 F 2 ) y = 0 , where A i , B i , . . . , F i are n × n matrices, ( λ, µ ) is an eigenvalue, and x ⊗ y is the corresponding eigenvector. In the generic case the problem has 4 n 2 eigenvalues that are solutions of det ( A 1 + λB 1 + µC 1 + λ 2 D 1 + λµE 1 + µ 2 F 1 ) = 0 det ( A 2 + λB 2 + µC 2 + λ 2 D 2 + λµE 2 + µ 2 F 2 ) = 0 . Jahrlebring (2008): Q2EP of a simpler form, with some of the terms λ 2 , λµ, µ 2 missing, appears in the study of linear time-delay systems for the single delay. Cortona, September 15-19, 2008 8/23

  12. Linearization ( A 1 + λB 1 + µC 1 + λ 2 D 1 + λµE 1 + µ 2 F 1 ) x = 0 ( Q2EP ) ( A 2 + λB 2 + µC 2 + λ 2 D 2 + λµE 2 + µ 2 F 2 ) y = 0 Cortona, September 15-19, 2008 9/23

  13. Linearization ( A 1 + λB 1 + µC 1 + λ 2 D 1 + λµE 1 + µ 2 F 1 ) x = 0 ( Q2EP ) ( A 2 + λB 2 + µC 2 + λ 2 D 2 + λµE 2 + µ 2 F 2 ) y = 0 Vinnikov (1989): It follows from the theory on determinantal representations that one could write Q2EP as a two-parameter eigenvalue problem with 2 n × 2 n matrices. Since there is no construction this is just a theoretical result. Cortona, September 15-19, 2008 9/23

  14. Linearization ( A 1 + λB 1 + µC 1 + λ 2 D 1 + λµE 1 + µ 2 F 1 ) x = 0 ( Q2EP ) ( A 2 + λB 2 + µC 2 + λ 2 D 2 + λµE 2 + µ 2 F 2 ) y = 0 Vinnikov (1989): It follows from the theory on determinantal representations that one could write Q2EP as a two-parameter eigenvalue problem with 2 n × 2 n matrices. Since there is no construction this is just a theoretical result. Best we can do is to write Q2EP as a two-parameter eigenvalue problem with 3 n × 3 n matrices: ✵ ✷ ✸ ✷ ✸ ✷ ✸ ✶ ✷ ✸ 0 0 0 A 1 B 1 C 1 D 1 E 1 F 1 x ✺ + λ ✺ + µ ❅ ✹ ✹ ✹ ✺ ❆ ✹ ✺ 0 − I 0 I 0 0 0 0 0 λx = 0 0 0 − I 0 0 0 I 0 0 µx ✵ ✷ ✸ ✷ ✸ ✷ ✸ ✶ ✷ ✸ 0 0 0 A 2 B 2 C 2 D 2 E 2 F 2 y ❅ ✹ ✺ + λ ✹ ✺ + µ ✹ ✺ ❆ ✹ ✺ 0 0 0 0 0 0 0 = 0 . − I I λy 0 0 0 0 0 0 0 − I I µy Cortona, September 15-19, 2008 9/23

  15. Weak linearization If we multiply the matrix of the first equation ✷ ✸ B 1 + λD 1 C 1 + λE 1 + µF 1 A 1 ✹ ✺ λI − I 0 µI 0 − I from left by the unimodular polynomial ✷ ✸ ✷ ✸ B 1 + λD 1 0 0 C 1 + λE 1 + µF 1 I I ✹ ✺ ✹ ✺ E ( λ, µ ) = 0 0 0 0 I I 0 0 0 0 I I and from right by the unimodular polynomial ✷ ✸ ✷ ✸ 0 0 0 0 I I ✹ ✺ ✹ ✺ F ( λ, µ ) = 0 I 0 λI I 0 µI 0 I 0 0 I we obtain ✷ ✸ A 1 + λB 1 + µC 1 + λ 2 D 1 + λµE 1 + µ 2 F 1 0 0 ✹ ✺ . 0 0 I 0 0 I Cortona, September 15-19, 2008 10/23

  16. Linearization is a singular 2EP ✷ ✸ ✷ ✸ ✷ ✸ 0 0 0 A 1 B 1 C 1 D 1 E 1 F 1 A (1) + λB (1) + µC (1) ✹ ✺ + λ ✹ ✺ + µ ✹ ✺ = 0 0 0 0 0 0 0 − I I 0 0 0 0 0 0 0 − I I ✷ ✸ ✷ ✸ ✷ ✸ A 2 B 2 C 2 0 D 2 E 2 0 0 F 2 A (2) + λB (2) + µC (2) ✺ + λ ✺ + µ ✹ ✹ ✹ ✺ . = 0 0 0 0 0 0 0 − I I 0 0 0 0 0 0 0 − I I The matrices of the corresponding pair of generalized eigenvalue problems are B (1) ⊗ C (2) − C (1) ⊗ B (2) , ∆ 0 = C (1) ⊗ A (2) − A (1) ⊗ C (2) , ∆ 1 = A (1) ⊗ B (2) − B (1) ⊗ A (2) . ∆ 2 = Lemma. In the generic case (matrices D 1 , D 2 , F 1 , F 2 are all nonsingular) it follows: 1. rank (∆ 1 ) = rank (∆ 2 ) = 8 n 2 , 2. rank (∆ 0 ) = 6 n 2 , 3. det ( α 0 ∆ 0 + α 1 ∆ 1 + α 2 ∆ 2 ) = 0 for all α 0 , α 1 , α 2 . Cortona, September 15-19, 2008 11/23

  17. Regular eigenvalues In the generic case (matrices D 1 , D 2 , F 1 , F 2 are all nonsingular), we have: ✷ ✸ ✷ ✸ 0 0 ✹ ✺ ⊗ ✹ ✺ , 1. A basis for ker (∆ 1 ) is e i e j i, j = 1 , . . . , n. 0 0 ✷ ✸ ✷ ✸ 0 0 D − 1 D − 1 ✹ ✺ ⊗ ✹ ✺ , 2. A basis for ker (∆ 2 ) is i, j = 1 , . . . , n. 1 E 1 e i 2 E 2 e j − e i − e j 3. ker (∆ i ) ⊂ ker (∆ 0 ) for i = 1 , 2 . A basis for the remaining vectors in ker (∆ 0 ) is ✷ ✸ ✷ ✸ 0 0 ✹ D − 1 ✺ ⊗ ✹ D − 1 ✺ , 1 ( E 1 − F 1 ) e i 2 ( E 2 − F 2 ) e j i, j = 1 , . . . , n. − e i − e j The eigenvalues of Q2EP are regular eigenvalues of the coupled matrix pencils Theorem. ∆ 1 − λ ∆ 0 and ∆ 2 − µ ∆ 0 from the weak linearization. Cortona, September 15-19, 2008 12/23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend