on an unsymmetric eigenvalue problem governing free
play

On an unsymmetric eigenvalue problem governing free vibrations of - PowerPoint PPT Presentation

On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures Markus Stammberger markus.stammberger@tuhh.de This is joint work with Heinrich Voss Hamburg University of Technology TUHH Markus Stammberger On an


  1. On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures Markus Stammberger markus.stammberger@tuhh.de This is joint work with Heinrich Voss Hamburg University of Technology TUHH Markus Stammberger On an unsymmetric eigenvalue problem 12.09.2008 1 / 18

  2. Outline Problem definition and properties 1 Numerical methods 2 Numerical Results 3 TUHH Markus Stammberger On an unsymmetric eigenvalue problem 12.09.2008 2 / 18

  3. Problem definition and properties Outline Problem definition and properties 1 Numerical methods 2 Numerical Results 3 TUHH Markus Stammberger On an unsymmetric eigenvalue problem 12.09.2008 3 / 18

  4. Problem definition and properties Problem definition Vibrations of fluid-solid structures can be modelled in terms of solid displacement and fluid pressure and one obtains the classical form of an eigenproblem. Div σ ( u ) + λρ s u = 0 in Ω s , ∆ p + λ c 2 p = 0 in Ω f , σ ( u ) n − p n = 0 on Γ I , ∇ pn − λρ f un = 0 on Γ I , u = 0 on Γ D , ∇ p n = 0 on Γ N , where u : solid displacement p : fluid pressure λ : eigenparameter σ ( u ) : linearized stress tensor ρ s , ρ f : densities of solid and fluid TUHH Markus Stammberger On an unsymmetric eigenvalue problem 12.09.2008 4 / 18

  5. Problem definition and properties Problem definition, cntd. This eigenvalue problem can be given an unsymmetric variational formulation which can be discretized by the Finite-Element method and one obtains the unsymmetric matrix eigenproblem „ M s „ K s « „ x s « « „ x s « C 0 Kx := = λ =: λ Mx , (1) − C T 0 K f x f M f x f where K s , M s ∈ R s × s are symmetric positive definite stiffness and mass matrices of the solid, K f , M f ∈ R f × f are symmetric stiffness and mass matrices of the fluid, where K f is semi positive-definite and M f positive definite, C ∈ R s × f is due to the coupling effects between fluid and solid, x s ∈ R s is the solid displacement vector, and x f ∈ R f the fluid pressure vector. This talks considers the properties of eigenproblem (1) and discusses ways how to use the symmetry of K s , K f , M s , and M f to adapt symmetric eigensolvers to the given problem. TUHH Markus Stammberger On an unsymmetric eigenvalue problem 12.09.2008 5 / 18

  6. Problem definition and properties Problem definition, cntd. This eigenvalue problem can be given an unsymmetric variational formulation which can be discretized by the Finite-Element method and one obtains the unsymmetric matrix eigenproblem „ M s „ K s « „ x s « « „ x s « C 0 Kx := = λ =: λ Mx , (1) − C T 0 K f x f M f x f where K s , M s ∈ R s × s are symmetric positive definite stiffness and mass matrices of the solid, K f , M f ∈ R f × f are symmetric stiffness and mass matrices of the fluid, where K f is semi positive-definite and M f positive definite, C ∈ R s × f is due to the coupling effects between fluid and solid, x s ∈ R s is the solid displacement vector, and x f ∈ R f the fluid pressure vector. This talks considers the properties of eigenproblem (1) and discusses ways how to use the symmetry of K s , K f , M s , and M f to adapt symmetric eigensolvers to the given problem. TUHH Markus Stammberger On an unsymmetric eigenvalue problem 12.09.2008 5 / 18

  7. Problem definition and properties Properties Some properties can easily be derived: Lemma M − 1 M − 1 „ « K s C (1) can be symmetrized by T := s s , i.e. 0 I T T Kx = λ T T Mx is a symmetric eigenvalue problem. (1) has only real non-negative eigenvalues. „ x s « If x := is a right eigenvector of (1) corresponding to the eigenvalue λ , x f „ λ x s « then ˆ x := is a left eigenvector. x f „ K s « 0 Right eigenvectors can be chosen orthonormal with respect to ˜ M := , 0 M f „ M s « 0 left eigenvectors can be chosen orthogonal with respect to ¯ M := . 0 K f Right eigenvectors x and left eigenvectors ˆ x corresponding to distinct eigenvalues satisfy x T Kx = ˆ x T Mx = 0 . ˆ TUHH Markus Stammberger On an unsymmetric eigenvalue problem 12.09.2008 6 / 18

  8. Problem definition and properties Properties Some properties can easily be derived: Lemma M − 1 M − 1 „ « K s C (1) can be symmetrized by T := s s , i.e. 0 I T T Kx = λ T T Mx is a symmetric eigenvalue problem. (1) has only real non-negative eigenvalues. „ x s « If x := is a right eigenvector of (1) corresponding to the eigenvalue λ , x f „ λ x s « then ˆ x := is a left eigenvector. x f „ K s « 0 Right eigenvectors can be chosen orthonormal with respect to ˜ M := , 0 M f „ M s « 0 left eigenvectors can be chosen orthogonal with respect to ¯ M := . 0 K f Right eigenvectors x and left eigenvectors ˆ x corresponding to distinct eigenvalues satisfy x T Kx = ˆ x T Mx = 0 . ˆ TUHH Markus Stammberger On an unsymmetric eigenvalue problem 12.09.2008 6 / 18

  9. Problem definition and properties Properties Some properties can easily be derived: Lemma M − 1 M − 1 „ « K s C (1) can be symmetrized by T := s s , i.e. 0 I T T Kx = λ T T Mx is a symmetric eigenvalue problem. (1) has only real non-negative eigenvalues. „ x s « If x := is a right eigenvector of (1) corresponding to the eigenvalue λ , x f „ λ x s « then ˆ x := is a left eigenvector. x f „ K s « 0 Right eigenvectors can be chosen orthonormal with respect to ˜ M := , 0 M f „ M s « 0 left eigenvectors can be chosen orthogonal with respect to ¯ M := . 0 K f Right eigenvectors x and left eigenvectors ˆ x corresponding to distinct eigenvalues satisfy x T Kx = ˆ x T Mx = 0 . ˆ TUHH Markus Stammberger On an unsymmetric eigenvalue problem 12.09.2008 6 / 18

  10. Problem definition and properties Properties Some properties can easily be derived: Lemma M − 1 M − 1 „ « K s C (1) can be symmetrized by T := s s , i.e. 0 I T T Kx = λ T T Mx is a symmetric eigenvalue problem. (1) has only real non-negative eigenvalues. „ x s « If x := is a right eigenvector of (1) corresponding to the eigenvalue λ , x f „ λ x s « then ˆ x := is a left eigenvector. x f „ K s « 0 Right eigenvectors can be chosen orthonormal with respect to ˜ M := , 0 M f „ M s « 0 left eigenvectors can be chosen orthogonal with respect to ¯ M := . 0 K f Right eigenvectors x and left eigenvectors ˆ x corresponding to distinct eigenvalues satisfy x T Kx = ˆ x T Mx = 0 . ˆ TUHH Markus Stammberger On an unsymmetric eigenvalue problem 12.09.2008 6 / 18

  11. Problem definition and properties Properties Some properties can easily be derived: Lemma M − 1 M − 1 „ « K s C (1) can be symmetrized by T := s s , i.e. 0 I T T Kx = λ T T Mx is a symmetric eigenvalue problem. (1) has only real non-negative eigenvalues. „ x s « If x := is a right eigenvector of (1) corresponding to the eigenvalue λ , x f „ λ x s « then ˆ x := is a left eigenvector. x f „ K s « 0 Right eigenvectors can be chosen orthonormal with respect to ˜ M := , 0 M f „ M s « 0 left eigenvectors can be chosen orthogonal with respect to ¯ M := . 0 K f Right eigenvectors x and left eigenvectors ˆ x corresponding to distinct eigenvalues satisfy x T Kx = ˆ x T Mx = 0 . ˆ TUHH Markus Stammberger On an unsymmetric eigenvalue problem 12.09.2008 6 / 18

  12. Problem definition and properties Properties, cntd. Lemma Let λ j ( A , B ) denote the j smallest eigenvalue of the eigenproblem Ax = λ Bx regarding the multiplicity of eigenvalues. Then it holds that λ j ( K , M ) ≤ λ j ( K s , M s ) , j = 1 , . . . , s λ s + f + 1 − j ( K , M ) ≥ λ s + 1 − j ( K s , M s ) , j = 1 , . . . , s λ j ( K , M ) ≤ λ j ( K f , M f ) , j = 1 , . . . , f λ s + f + 1 − j ( K , M ) ≥ λ f + 1 − j ( K f , M f ) , j = 1 , . . . , f . Proof: Let E s := span { e 1 , . . . , e s } where e j ∈ R s + f denotes the j th unit vector containing a 1 in its j th component and zeros elsewhere. Then it holds that x T T T Kx x T T T Kx λ j ( K , M ) = min max ≤ min max x T T T Mx x T T T Mx dim V = j x ∈ V , x � = 0 dim V = j , V ⊂ E s x ∈ V , x � = 0 y T K s M − 1 K s y s = min max = λ j ( K s , M s ) . y T K s y dim W = j , W ⊂ R s y ∈ W , y � = 0 The second inequality is obtained analogously from the maxmin characterization, and the third and fourth inequalities follow in a similar way. TUHH Markus Stammberger On an unsymmetric eigenvalue problem 12.09.2008 7 / 18

  13. Problem definition and properties An inverse-free Rayleigh functional A Rayleigh quotient for fluid-solid eigenproblems is given immediately by its symmetrized version. As it involves inverse matrices it is numerically less valuable and we are interested in an inverse-free analogon. „ x s « For a given right eigenvector corresponding to the eigenvalue λ it holds x f « T „ K s „ λ x s C « „ x s « x f 0 K f x f λ = « T „ M s „ λ x s « „ x s « 0 − C T x f x f M f This suggests to define a Rayleigh functional p for some general s + f -dimensional vector by the requirement p ( x s , x f ) = p ( x s , x f ) x T s K s x s + p ( x s , x f ) x T s Cx f + x T f K f x f f C T x s + x T p ( x s , x f ) x T s M s x s − x T f M f x f which leads to p ( x s , x f ) 2 x T s M s x s + p ( x s , x f )( x T f M f x f − x T s K s x s − 2 x T s Cx f ) − x T f K f x f = 0 . We therefore choose the unique positive root of this equation as Rayleigh functional. TUHH Markus Stammberger On an unsymmetric eigenvalue problem 12.09.2008 8 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend