matrix eigenvalue problems in stochastic structural
play

Matrix-Eigenvalue Problems in Stochastic Structural Dynamics S - PowerPoint PPT Presentation

Matrix-Eigenvalue Problems in Stochastic Structural Dynamics S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. April 2004 Random Eigenvalue Problems p.1/28 Outline of the Presentation Random eigenvalue


  1. Matrix-Eigenvalue Problems in Stochastic Structural Dynamics S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. April 2004 Random Eigenvalue Problems – p.1/28

  2. Outline of the Presentation Random eigenvalue problem Perturbation Methods Asymptotic analysis of multidimensional integrals Moments and pdf of the eigenvalues Numerical Example & results Conclusions & open problems April 2004 Random Eigenvalue Problems – p.2/28

  3. Random Eigenvalue Problem The random eigenvalue problem of undamped or proportionally damped linear systems: K ( x ) φ j = λ j M ( x ) φ j λ j eigenvalues; φ j eigenvectors; M ( x ) ∈ R N × N mass matrix and K ( x ) ∈ R N × N stiffness matrix. x ∈ R m is random parameter vector with pdf p x ( x ) = e − L ( x ) − L ( x ) is the log-likelihood function. April 2004 Random Eigenvalue Problems – p.3/28

  4. The Broad Issues To obtain the joint probability density function of the eigenvalues and the eigenvectors If a matrix A = M − 1 K has pdf f ( A ) then the joint pdf of the eigenvalues (R. J. Muirhead, Theorem 3.2.17, pp 104) � π N 2 / 2 Γ N (( N/ 2))Π N f ( HΛH T ) d H i ≤ j ( λ i − λ j ) O ( N ) It is hard to get marginal distribution of the eigenvalues - too much information!! April 2004 Random Eigenvalue Problems – p.4/28

  5. Perturbation Method Taylor series expansion of λ j ( x ) about x = α λ j ( x ) ≈ λ j ( α ) + d T λ j ( α ) ( x − α ) + 1 2 ( x − α ) T D λ j ( α ) ( x − α ) In mean-centered approach α is the mean of x Alternatively, α can be obtained such that the any moment of each eigenvalue is calculated most accurately April 2004 Random Eigenvalue Problems – p.5/28

  6. α -centered perturbation The r th moment of λ j ( x ) : � � j ( x ) e − L ( x ) d x = (2 π ) − m/ 2 m e − h j ( x ) d x λ ( r ) m λ r = j R R (1) where h j ( x ) = L ( x ) − r ln λ j ( x ) (2) Expand the function h ( x ) in a Taylor series about a point where h j ( x ) attends its global minimum. April 2004 Random Eigenvalue Problems – p.6/28

  7. α -centered perturbation Therefore, the optimal point can be obtained as ∂h j ( x ) = 0 , ∀ k (3) ∂x k Combining for all k we have d λ j ( α ) = λ j ( α ) d L ( α ) /r (4) April 2004 Random Eigenvalue Problems – p.7/28

  8. Multidimensional Integrals We want to evaluate an m -dimensional integral over the unbounded domain R m : � m e − f ( x ) d x J = R Assume f ( x ) is smooth and at least twice differentiable The maximum contribution to this integral comes from the neighborhood where f ( x ) reaches its global minimum, say θ ∈ R m April 2004 Random Eigenvalue Problems – p.8/28

  9. Multidimensional Integrals Therefore, at x = θ ∂f ( x ) = 0 , ∀ k or d f ( θ ) = 0 ∂x k Expand f ( x ) in a Taylor series about θ : � � � T D f ( θ )( x − θ ) + ε ( x , θ ) f ( θ ) + 1 2 ( x − θ ) − J = m e d x R � T D f ( θ )( x − θ ) − ε ( x , θ ) d x = e − f ( θ ) 2 ( x − θ ) m e − 1 R April 2004 Random Eigenvalue Problems – p.9/28

  10. Multidimensional Integrals Use the coordinate transformation: ξ = ( x − θ ) D − 1 / 2 ( θ ) f The Jacobian: � J � = � D f ( θ ) � − 1 / 2 The integral becomes: � � ξ � T ξ m � D f ( θ ) � − 1 / 2 e − 1 J ≈ e − f ( θ ) d ξ 2 R J ≈ (2 π ) m/ 2 e − f ( θ ) � D f ( θ ) � − 1 / 2 or April 2004 Random Eigenvalue Problems – p.10/28

  11. Moments of Single Eigenvalues An arbitrary r th order moment of the eigenvalues can be obtained from � � � µ ( r ) λ r m λ r = E j ( x ) = j ( x ) p x ( x ) d x j R � m e − ( L ( x ) − r ln λ j ( x )) d x , = r = 1 , 2 , 3 · · · R Previous result can be used by choosing f ( x ) = L ( x ) − r ln λ j ( x ) April 2004 Random Eigenvalue Problems – p.11/28

  12. Moments of Single Eigenvalues After some simplifications j ( θ ) e − L ( θ ) µ ( r ) ≈ (2 π ) m/ 2 λ r j � � − 1 / 2 � � � D L ( θ ) + 1 r r d L ( θ ) d L ( θ ) T − � � λ j ( θ ) D λ j ( θ ) � r = 1 , 2 , 3 , · · · θ is obtained from: d λ j ( θ ) r = λ j ( θ ) d L ( θ ) April 2004 Random Eigenvalue Problems – p.12/28

  13. Maximum Entropy pdf Constraints for u ∈ [0 , ∞ ] : � ∞ p λ j ( u ) du = 1 0 � ∞ u r p λ j ( u ) du = µ ( r ) j , r = 1 , 2 , 3 , · · · , n 0 Maximizing Shannon’s measure of entropy � ∞ S = − 0 p λ j ( u ) ln p λ j ( u ) du , the pdf of λ j is p λ j ( u ) = e − { ρ 0 + � n i =1 ρ i u i } = e − ρ 0 e − � n i =1 ρ i u i , u ≥ 0 April 2004 Random Eigenvalue Problems – p.13/28

  14. Maximum Entropy pdf Taking first two moments, the resulting pdf is a truncated Gaussian density function   � � 2   u − �   λ j 1 � exp p λ j ( u ) = � − √ 2 σ 2   � 2 πσ j Φ λ j /σ j   j j = µ (2) − � where σ 2 λ 2 j j Ensures that the probability of any eigenvalues becoming negative is zero April 2004 Random Eigenvalue Problems – p.14/28

  15. Central χ 2 Approximation Pdf of j th eigenvalue � u − η j � = ( u − η j ) ν j / 2 − 1 e − ( u − η j ) / 2 γ j p λ j ( u ) ≈ 1 p χ 2 (2 γ j ) ν j / 2 Γ( ν j / 2) γ j γ j νj The constants η j , γ j , and ν j are such that the first three moments of λ j are the same. April 2004 Random Eigenvalue Problems – p.15/28

  16. Joint Moments of Two Eigenvalues Arbitrary r − s -th order joint moment of two eigenvalues � � µ ( rs ) λ r j ( x ) λ s = E l ( x ) jl � = m exp {− ( L ( x ) − r ln λ j ( x ) − s ln λ l ( x )) } d x , R Choose f ( x ) = L ( x ) − r ln λ j ( x ) − s ln λ l ( x ) April 2004 Random Eigenvalue Problems – p.16/28

  17. Joint Moments of Two Eigenvalues After some simplifications µ ( rs ) l ( θ ) exp {− L ( θ ) } � D f ( θ ) � − 1 / 2 ≈ (2 π ) m/ 2 λ r j ( θ ) λ s jl where θ is obtained from: r s d L ( θ ) = λ j ( θ ) d λ j ( θ ) + λ l ( θ ) d λ l ( θ ) j ( θ ) d λ j ( θ ) d λ j ( θ ) T − r D f ( θ ) = D L ( θ ) + λ 2 l ( θ ) d λ l ( θ ) d λ l ( θ ) T − r s s λ j ( θ ) D λ j ( θ ) + λ l ( θ ) D λ l ( θ ) λ 2 April 2004 Random Eigenvalue Problems – p.17/28

  18. Joint Moments of Multiple Eigenvalues We want to obtain � � � µ ( r 1 r 2 ··· r n ) λ r 1 j 1 ( x ) λ r 2 j 2 ( x ) · · · λ r n = j n ( x ) p x ( x ) d x j 1 j 2 ··· j n m R It can be shown that ≈ (2 π ) m/ 2 � � µ ( r 1 r 2 ··· r n ) λ r 1 j 1 ( θ ) λ r 2 j 2 ( θ ) · · · λ r n j n ( θ ) j 1 j 2 ··· j n exp {− L ( θ ) } � D f ( θ ) � − 1 / 2 April 2004 Random Eigenvalue Problems – p.18/28

  19. Joint Moments of Multiple Eigenvalues Here θ is obtained from r 1 r 2 r n d L ( θ ) = λ j 1 ( θ ) d λ j 1 ( θ )+ λ j 1 ( θ ) d λ j 2 ( θ )+ · · · λ j n ( θ ) d λ jn ( θ ) and the Hessian matrix is given by j n ,r n � r j ( θ ) d λ j ( θ ) d λ j ( θ ) T D f ( θ ) = D L ( θ )+ λ 2 j = j 1 , j 2 , · · · r = r 1 , r 2 , · · · r − λ j ( θ ) D λ j ( θ ) April 2004 Random Eigenvalue Problems – p.19/28

  20. Numerical example Undamped two degree-of-system system: ¯ m 1 = 1 Kg, m 2 = 1 . 5 Kg, k 1 = 1000 ¯ k 2 = 1100 N/m and k 3 = 100 N/m. N/m, 1 2 m m 2 1 �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� k k2 � � k 3 �� �� Only � � 1 �� �� � � �� �� � � the stiffness parameters k 1 and k 2 are uncertain: k i (1 + ǫ i x i ) , i = 1 , 2 . x = { x 1 , x 2 } T ∈ R 2 and the k i = ¯ ‘strength parameters’ ǫ 1 = ǫ 2 = 0 . 25 . April 2004 Random Eigenvalue Problems – p.20/28

  21. Numerical example Following six methods are compared 1. Mean-centered first-order perturbation 2. Mean-centered second-order perturbation 3. α -centered first-order perturbation 4. α -centered second-order perturbation 5. Asymptotic method 6. Monte Carlo Simulation (10K samples) - can be considered as benchmark. April 2004 Random Eigenvalue Problems – p.21/28

  22. Numerical example The percentage error: Error i th method = { µ ′ k } i th method − { µ ′ k } MCS × 100 { µ ′ k } MCS i = 1 , · · · 5 . April 2004 Random Eigenvalue Problems – p.22/28

  23. Numerical example 20 Mean−centered 1st−order Mean−centered 2nd−order 18 α −centered 1st−order α −centered 2nd−order 16 Asymptotic Method 14 Percentage error wrt MCS 12 10 8 6 4 2 0 1 2 3 4 k−th order moment: E [ λ k 1 ] Percentage error for the first four raw moments of the first eigenvalue April 2004 Random Eigenvalue Problems – p.23/28

  24. Numerical example 0 −2 −4 −6 Percentage error wrt MCS −8 −10 Mean−centered 1st−order −12 Mean−centered 2nd−order α −centered 1st−order α −centered 2nd−order −14 Asymptotic Method −16 −18 −20 1 2 3 4 k−th order moment: E [ λ k 2 ] Percentage error for the first four raw moments of the second eigenvalue April 2004 Random Eigenvalue Problems – p.24/28

  25. Numerical example 3 x 10 −3 Mean−centered 1st−order Mean−centered 2nd−order α −centered 1st−order α −centered 2nd−order 2.5 Asymptotic Method 2 (u) 1.5 1 p λ 1 0.5 0 0 500 1000 1500 u Probability density function of the first eigenvalue April 2004 Random Eigenvalue Problems – p.25/28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend