top eigenvalue of a random matrix large deviations
play

Top eigenvalue of a random matrix: Large deviations Satya N. - PowerPoint PPT Presentation

Top eigenvalue of a random matrix: Large deviations Satya N. Majumdar Laboratoire de Physique Th eorique et Mod` eles Statistiques,CNRS, Universit e Paris-Sud, France S.N. Majumdar Top eigenvalue of a random matrix: Large deviations


  1. ��� ��� ��� ��� ��� ��� �� �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Large deviations and 3 -rd order phase transition typical fluctuations of size ∼ N − 2 / 3 → Tracy-Widom distributed S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  2. ��� ��� ��� ��� ��� ��� �� �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Large deviations and 3 -rd order phase transition typical fluctuations of size ∼ N − 2 / 3 → Tracy-Widom distributed Atypical rare fluctuations of size ∼ O (1) ⇒ not described by Tracy-Widom S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  3. ��� ��� ��� ��� ��� ��� �� �� � � � � � � � � � � � � � � � � � � � � � � � � � � Large deviations and 3 -rd order phase transition typical fluctuations of size ∼ N − 2 / 3 → Tracy-Widom distributed Atypical rare fluctuations of size ∼ O (1) ⇒ not described by Tracy-Widom ⇒ rather by large deviation functions Pr( λ max ) typical TRACY−WIDOM −2/3 N large � � large (left) � � � � (right) � � � � � � 2 φ − e− N e− φ + � � N � � � � � � 2 λ max S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  4. Large deviations and 3 -rd order phase transition typical fluctuations of size ∼ N − 2 / 3 → Tracy-Widom distributed Atypical rare fluctuations of size ∼ O (1) ⇒ not described by Tracy-Widom ⇒ rather by large deviation functions Pr( λ max ) Pr( λ max ) critical point typical ��� ��� ��� ��� TRACY−WIDOM ��� ��� �� �� −2/3 � � N � � large large � � � � � � large large (left) (left) � � � � � � � � (right) � � (right) � � � � � � � � � � 2 φ − e− N 2 φ − � � e− φ + e− e− N φ + � � N � � N � � � � � � � � � � 2 2 λ max λ max S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  5. Large deviations and 3 -rd order phase transition typical fluctuations of size ∼ N − 2 / 3 → Tracy-Widom distributed Atypical rare fluctuations of size ∼ O (1) ⇒ not described by Tracy-Widom ⇒ rather by large deviation functions Pr( λ max ) Pr( λ max ) critical point typical ��� ��� ��� ��� TRACY−WIDOM ��� ��� �� �� −2/3 � � N � � large large � � � � � � large large (left) (left) � � � � � � � � (right) � � (right) � � � � � � � � � � 2 φ − e− N 2 φ − � � e− φ + e− e− N φ + � � N � � N � � � � � � � � � � 2 2 λ max λ max nonanalytic behavior of the large deviation functions √ at the critical point 2 = ⇒ 3 -rd order phase transition Review: S.M. & G. Schehr, J. Stat. Mech. P01012 (2014) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  6. II. Clue to phase transition S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  7. Stability of a Large Complex System S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  8. Linear Stability of a Large Complex (Randomly Connected) System • Consider a stable non-interacting population of N species with equlibrium density ρ ⋆ i S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  9. Linear Stability of a Large Complex (Randomly Connected) System • Consider a stable non-interacting population of N species with equlibrium density ρ ⋆ i Stable: x i = ρ i − ρ ⋆ i → small disturbed density dx i / dt = − x i → relaxes back to 0 S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  10. Linear Stability of a Large Complex (Randomly Connected) System • Consider a stable non-interacting population of N species with equlibrium density ρ ⋆ i Stable: x i = ρ i − ρ ⋆ i → small disturbed density dx i / dt = − x i → relaxes back to 0 • Now switch on the interaction between species S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  11. Linear Stability of a Large Complex (Randomly Connected) System • Consider a stable non-interacting population of N species with equlibrium density ρ ⋆ i Stable: x i = ρ i − ρ ⋆ i → small disturbed density dx i / dt = − x i → relaxes back to 0 • Now switch on the interaction between species dx i / dt = − x i + α � N j =1 J ij x j J ij → ( N × N ) random interaction matrix α → interaction strength S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  12. Linear Stability of a Large Complex (Randomly Connected) System • Consider a stable non-interacting population of N species with equlibrium density ρ ⋆ i Stable: x i = ρ i − ρ ⋆ i → small disturbed density dx i / dt = − x i → relaxes back to 0 • Now switch on the interaction between species dx i / dt = − x i + α � N j =1 J ij x j J ij → ( N × N ) random interaction matrix α → interaction strength • Question: What is the probabality that the system remains stable once the interaction is switched on? (R.M. May, Nature, 238, 413, 1972) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  13. Stability Criterion d • linear stability: dt [ x ] = [ α J − I ][ x ] ( J → random interaction matrix) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  14. Stability Criterion d • linear stability: dt [ x ] = [ α J − I ][ x ] ( J → random interaction matrix) Let { λ 1 , λ 2 , · · · , λ N } → eigenvalues of the matrix J S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  15. Stability Criterion d • linear stability: dt [ x ] = [ α J − I ][ x ] ( J → random interaction matrix) Let { λ 1 , λ 2 , · · · , λ N } → eigenvalues of the matrix J • Stable if αλ i < 1 for all i = 1 , 2 , · · · , N ⇒ λ max < 1 α = w → stability criterion w → inverse interaction strength S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  16. Stability Criterion d • linear stability: dt [ x ] = [ α J − I ][ x ] ( J → random interaction matrix) Let { λ 1 , λ 2 , · · · , λ N } → eigenvalues of the matrix J • Stable if αλ i < 1 for all i = 1 , 2 , · · · , N ⇒ λ max < 1 α = w → stability criterion w → inverse interaction strength • Prob.(the system is stable)=Prob.[ λ max < w ] = P ( w , N ) Cumulative distribution of the top eigenvalue S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  17. Stable-Unstable Phase Transition as N → ∞ • Assuming that the interaction matrix J ij → Real Symmetric Gaussian � � − N i , j J 2 � − N 2 Tr ( J 2 ) � Prob . [ J ij ] ∝ exp � ∝ exp ij 2 S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  18. Stable-Unstable Phase Transition as N → ∞ • Assuming that the interaction matrix J ij → Real Symmetric Gaussian � � − N i , j J 2 � − N 2 Tr ( J 2 ) � Prob . [ J ij ] ∝ exp � ∝ exp ij 2 • May observed a sharp phase transition as N → ∞ : √ w = 1 α > 2 ⇒ Stable (weakly interacting) √ w = 1 α < 2 ⇒ Unstable (strongly interacting) Prob.(the system is stable)=Prob.[ λ max < w ] = P ( w , N ) w P( ) , N STABLE 1 0 w UNSTABLE 2 = 1/ α S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  19. Finite but Large N : Prob.(the system is stable)=Prob.[ λ max < w ] = P ( w , N ) What happens for finite but large N ? S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  20. Finite but Large N : Prob.(the system is stable)=Prob.[ λ max < w ] = P ( w , N ) What happens for finite but large N ? w = Prob.[ λ max < w ] P( , ) N STABLE 1 finite but large N 0 2 UNSTABLE w • Is there any thermodynamic sense to this phase transition? • What is the analogue of free energy? • What is the order of this phase transition? S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  21. III. Summary of Results S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  22. For Large but Finite N : Summary of Results P( w , ) = Prob.[ λ max < w ] N STABLE 1 width of O ( N −2/3 ) finite but large N 2 w UNSTABLE S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  23. For Large but Finite N : Summary of Results P( w , ) = Prob.[ λ max < w ] N STABLE 1 width of O ( N −2/3 ) finite but large N 2 w UNSTABLE √ − N 2 Φ − ( w ) + . . . � � P ( w , N ) ∼ exp for 2 − w ∼ O (1) � √ √ √ 2 N 2 / 3 � �� 2 | ∼ O ( N − 2 / 3 ) ∼ F 1 w − 2 for | w − √ ∼ 1 − exp [ − N Φ + ( w ) + . . . ] for w − 2 ∼ O (1) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  24. For Large but Finite N : Summary of Results P( w , ) = Prob.[ λ max < w ] N STABLE 1 width of O ( N −2/3 ) finite but large N 2 w UNSTABLE √ − N 2 Φ − ( w ) + . . . � � P ( w , N ) ∼ exp for 2 − w ∼ O (1) � √ √ √ 2 N 2 / 3 � �� 2 | ∼ O ( N − 2 / 3 ) ∼ F 1 w − 2 for | w − √ ∼ 1 − exp [ − N Φ + ( w ) + . . . ] for w − 2 ∼ O (1) Crossover function: F 1 ( z ) → Tracy-Widom (1994) Exact rate functions: Φ − ( w ) → Dean & S.M. 2006 Φ + ( w ) → S.M. & Vergassola 2009 Higher order corrections: ( Borot, Eynard, S.M., & Nadal 2011, Nadal & S.M., 2011 ) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  25. Exact Left and Right Large Deviation Function Using Coulomb gas + Saddle point method for large N : S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  26. Exact Left and Right Large Deviation Function Using Coulomb gas + Saddle point method for large N : • Left large deviation function: 1 � 36 w 2 − w 4 − (15 w + w 3 ) � w 2 + 6 Φ − ( w ) = 108 √ � �� � + 27 ln(18) − 2 ln( w + 6 + w 2 ) w < 2 where [D. S. Dean & S.M., PRL, 97, 160201 (2006)] S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  27. Exact Left and Right Large Deviation Function Using Coulomb gas + Saddle point method for large N : • Left large deviation function: 1 � 36 w 2 − w 4 − (15 w + w 3 ) � w 2 + 6 Φ − ( w ) = 108 √ � �� � + 27 ln(18) − 2 ln( w + 6 + w 2 ) w < 2 where [D. S. Dean & S.M., PRL, 97, 160201 (2006)] √ √ 1 2 − w ) 3 In particular, as w → 2 (from left), Φ − ( w ) → 2 ( √ 6 S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  28. Exact Left and Right Large Deviation Function Using Coulomb gas + Saddle point method for large N : • Left large deviation function: 1 � 36 w 2 − w 4 − (15 w + w 3 ) � w 2 + 6 Φ − ( w ) = 108 √ � �� � + 27 ln(18) − 2 ln( w + 6 + w 2 ) w < 2 where [D. S. Dean & S.M., PRL, 97, 160201 (2006)] √ √ 1 2 − w ) 3 In particular, as w → 2 (from left), Φ − ( w ) → 2 ( √ 6 • Right large deviation function: √ � � w 2 − 2 √ Φ + ( w ) = 1 w − � w 2 − 2 + ln √ w > 2 2 w where 2 [S.M. & Vergassola, PRL, 102, 060601 (2009)] S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  29. Exact Left and Right Large Deviation Function Using Coulomb gas + Saddle point method for large N : • Left large deviation function: 1 � 36 w 2 − w 4 − (15 w + w 3 ) � w 2 + 6 Φ − ( w ) = 108 √ � �� � + 27 ln(18) − 2 ln( w + 6 + w 2 ) w < 2 where [D. S. Dean & S.M., PRL, 97, 160201 (2006)] √ √ 1 2 − w ) 3 In particular, as w → 2 (from left), Φ − ( w ) → 2 ( √ 6 • Right large deviation function: √ � � w 2 − 2 √ Φ + ( w ) = 1 w − � w 2 − 2 + ln √ w > 2 2 w where 2 [S.M. & Vergassola, PRL, 102, 060601 (2009)] √ √ Φ + ( w ) → 2 7 / 4 2) 3 / 2 As w → 2 (from right), 3 ( w − S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  30. Large Deviation Functions These large deviation functions Φ ± ( w ) have been found useful in a large variety of problems: [ Fyodorov 2004, Fyodorov & Williams 2007, Bray & Dean 2007, Auffinger, Ben Arous & Cerny 2010, Fydorov & Nadal 2012.... —— stationary points on random Gaussian surfaces and spin glass landscapes] [ Cavagna, Garrahan, Giardina 2000,... —— Glassy systems] [ Susskind 2003, Douglas et. al. 2004, Aazami & Easther 2006, Marsh et. al. 2011, ... —— String theory & Cosmology] [ Beltrani 2007, Dedieu & Malajovich, 2007, Houdre 2011... ——Random Polynomials, Random Words (Young diagrams) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  31. 3-rd Order Phase Transition √  � − N 2 Φ − ( w ) + . . . � exp for w < 2 ( unstable )  P ( w , N ) ≈ √ 1 − exp {− N Φ + ( w ) + . . . } for w > 2 ( stable )  S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  32. 3-rd Order Phase Transition √  � − N 2 Φ − ( w ) + . . . � exp for w < 2 ( unstable )  P ( w , N ) ≈ √ 1 − exp {− N Φ + ( w ) + . . . } for w > 2 ( stable )  √ √  − 2 − w ) 3 Φ − ( w ) ∼ ( as w → 2 N →∞ − 1   lim N 2 ln [ P ( w , N )] = √ +  0 as w → 2  − → analogue of the free energy difference S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  33. 3-rd Order Phase Transition √  � − N 2 Φ − ( w ) + . . . � exp for w < 2 ( unstable )  P ( w , N ) ≈ √ 1 − exp {− N Φ + ( w ) + . . . } for w > 2 ( stable )  √ √  − 2 − w ) 3 Φ − ( w ) ∼ ( as w → 2 N →∞ − 1   lim N 2 ln [ P ( w , N )] = √ +  0 as w → 2  − → analogue of the free energy difference Tracy−Widom [−ln P]/N 2 large) finite N ( w 2 N limit ~ ( 2 _ w) 3 S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  34. 3-rd Order Phase Transition √  � − N 2 Φ − ( w ) + . . . � exp for w < 2 ( unstable )  P ( w , N ) ≈ √ 1 − exp {− N Φ + ( w ) + . . . } for w > 2 ( stable )  √ √  − 2 − w ) 3 Φ − ( w ) ∼ ( as w → 2 N →∞ − 1   lim N 2 ln [ P ( w , N )] = √ +  0 as w → 2  − → analogue of the free energy difference 3-rd derivative → discontinuous Tracy−Widom [−ln P]/N 2 √ Crossover: N → ∞ , w → 2 keeping large) finite N ( √ 2) N 2 / 3 fixed ( w − � √ √ 2 N 2 / 3 � �� w P ( w , N ) → F 1 w − 2 2 N limit ~ ( 2 _ w) 3 → Tracy-Widom S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  35. Large N Phase Transition: Phase Diagram 1 N crossover STABLE UNSTABLE ( weakly interacting ) strongly interacting ) ( �� �� �� �� 0 α= 1 w 1 2 S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  36. A nice review of large-N gauge theory: M. Marino, arXiv:1206.6272 S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  37. �� �� �� �� Large N Phase Transition: Phase Diagram U(N) lattice gauge theory in 2−d GROSS−WITTEN−WADIA transition (1980) 1 N crossover WEAK STRONG �� �� �� �� 0 g c coupling strength g S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  38. Large N Phase Transition: Phase Diagram U(N) lattice gauge theory in 2−d GROSS−WITTEN−WADIA transition (1980) 1 N 1 N crossover crossover STABLE UNSTABLE WEAK STRONG ( weakly interacting ) ( strongly interacting ) �� �� �� �� �� �� �� �� 0 g c 0 α = 1 w 1 2 coupling strength g S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  39. Large N Phase Transition: Phase Diagram U(N) lattice gauge theory in 2−d GROSS−WITTEN−WADIA transition (1980) 1 N 1 N crossover crossover STABLE UNSTABLE WEAK STRONG ( weakly interacting ) ( strongly interacting ) �� �� �� �� �� �� �� �� 0 g c 0 α = 1 w 1 2 coupling strength g Similar 3-rd order phase transition in U ( N ) lattice-gauge theory in 2-d Unstable phase ≡ Strong coupling phase of Yang-Mills gauge theory Stable phase ≡ Weak coupling phase of Yang-Mills gauge theory Tracy-Widom ⇒ crossover function in the double scaling regime (for finite but large N ) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  40. Main Conclusion: Tracy-Widom distribution is a universal crossover function associated with a 3-rd order phase transition Review: S.M. & G. Schehr, J. Stat. Mech. P01012 (2014) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  41. IV. Coulomb Gas S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  42. Gaussian Random Matrices • ( N × N ) Gaussian random matrix: J ≡ [ J ij ] • Ensembles: Orthogonal (GOE), Unitary (GUE) or Symplectic (GSE) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  43. Gaussian Random Matrices • ( N × N ) Gaussian random matrix: J ≡ [ J ij ] • Ensembles: Orthogonal (GOE), Unitary (GUE) or Symplectic (GSE) � � − β � J † J � • Prob [ J ij ] ∝ exp 2 N Tr ) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  44. Gaussian Random Matrices • ( N × N ) Gaussian random matrix: J ≡ [ J ij ] • Ensembles: Orthogonal (GOE), Unitary (GUE) or Symplectic (GSE) � � − β � J † J � • Prob [ J ij ] ∝ exp 2 N Tr ) • N real eigenvalues { λ 1 , λ 2 , . . . , λ N } → correlated random variables S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  45. Gaussian Random Matrices • ( N × N ) Gaussian random matrix: J ≡ [ J ij ] • Ensembles: Orthogonal (GOE), Unitary (GUE) or Symplectic (GSE) � � − β � J † J � • Prob [ J ij ] ∝ exp 2 N Tr ) • N real eigenvalues { λ 1 , λ 2 , . . . , λ N } → correlated random variables • Joint distribution of eigenvalues ( Wigner, 1951 ) � N � � P ( λ 1 , λ 2 , . . . , λ N ) = 1 − β � λ 2 | λ j − λ k | β exp 2 N i Z N i =1 j < k where the Dyson index β = 1 (GOE), β = 2 (GUE) or β = 4 (GSE) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  46. Gaussian Random Matrices • ( N × N ) Gaussian random matrix: J ≡ [ J ij ] • Ensembles: Orthogonal (GOE), Unitary (GUE) or Symplectic (GSE) � � − β � J † J � • Prob [ J ij ] ∝ exp 2 N Tr ) • N real eigenvalues { λ 1 , λ 2 , . . . , λ N } → correlated random variables • Joint distribution of eigenvalues ( Wigner, 1951 ) � N � � P ( λ 1 , λ 2 , . . . , λ N ) = 1 − β � λ 2 | λ j − λ k | β exp 2 N i Z N i =1 j < k where the Dyson index β = 1 (GOE), β = 2 (GUE) or β = 4 (GSE) • Z N = Partition Function � ∞ � ∞ � N � � − β � � λ 2 | λ j − λ k | β = . . . { d λ i } exp 2 N i −∞ −∞ i i =1 j < k S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  47. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �������������������� �������������������� � � Coulomb Gas Interpretation • Z N =     � ∞ � ∞ N  − β   � � N λ 2 � . . . { d λ i } exp i − log | λ j − λ k |  2 −∞ −∞   i i =1 j � = k S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  48. Coulomb Gas Interpretation • Z N =     � ∞ � ∞ N  − β   � � N λ 2 � . . . { d λ i } exp i − log | λ j − λ k |  2 −∞ −∞   i i =1 j � = k • 2-d Coulomb gas confined to a line (Dyson) with β → inverse temp. λ 1 λ 2 λ 3 λ Ν � � � � � � � � confining � � � � � � parabolic � � � � potential � � � � � � � � � � � � � � � � �������������������� �������������������� � � 0 λ S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  49. Coulomb Gas Interpretation • Z N =     � ∞ � ∞ N  − β   � � N λ 2 � . . . { d λ i } exp i − log | λ j − λ k |  2 −∞ −∞   i i =1 j � = k • 2-d Coulomb gas confined to a line (Dyson) with β → inverse temp. λ 1 λ 2 λ 3 λ Ν � � � � � � � � confining � � � � � � parabolic � � � � potential � � � � � � � � � � � � � � � � �������������������� �������������������� � � 0 λ • Balance of energy ⇒ N 2 λ 2 ∼ N 2 • Typical eigenvalue: λ typ ∼ O (1) for large N S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  50. Spectral Density: Wigner’s Semicircle Law N • Av. density of states: ρ ( λ, N ) = � 1 � δ ( λ − λ i ) � N i =1 N →∞ ρ ( λ ) = 1 � 2 − λ 2 • Wigner’s Semi-circle: ρ ( λ, N ) − − − − → π ρ(λ) WIGNER SEMI−CIRCLE SEA − 2 0 2 λ √ • � λ max � = 2 for large N . • λ max fluctuates from one sample to another. Prob[ λ max , N ] = ? S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  51. Probability of Large Deviations of λ max : TRACY−WIDOM ρ (λ, Ν) WIGNER SEMI−CIRCLE −2/3 N LEFT LARGE DEVIATION − 2 0 2 λ RIGHT LARGE DEVIATION � √ √ 2 N 2 / 3 ( w − � • Tracy-Widom law Prob [ λ max ≤ w , N ] → F β 2) describes the prob. of typical (small) fluctuations of ∼ O ( N − 2 / 3 ) √ √ 2 | ∼ N − 2 / 3 around the mean 2, i.e., when | λ max − S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  52. Probability of Large Deviations of λ max : TRACY−WIDOM ρ (λ, Ν) WIGNER SEMI−CIRCLE −2/3 N LEFT LARGE DEVIATION − 2 0 2 λ RIGHT LARGE DEVIATION � √ √ 2 N 2 / 3 ( w − � • Tracy-Widom law Prob [ λ max ≤ w , N ] → F β 2) describes the prob. of typical (small) fluctuations of ∼ O ( N − 2 / 3 ) √ √ 2 | ∼ N − 2 / 3 around the mean 2, i.e., when | λ max − • Q: How to describe the prob. of large (atypical) fluctuations when √ | λ max − 2 | ∼ O (1) → Large deviations from mean S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  53. Large Deviation Tails of λ max TRACY−WIDOM ρ (λ, Ν) WIGNER SEMI−CIRCLE −2/3 N LEFT LARGE DEVIATION − 2 0 2 λ RIGHT LARGE DEVIATION Prob. density of the top eigenvalue: Prob . [ λ max = w , N ] behaves as: √ − β N 2 Φ − ( w ) � � ∼ exp for 2 − w ∼ O (1) � √ √ √ 2 N 2 / 3 � �� N 2 / 3 f β 2 | ∼ O ( N − 2 / 3 ) ∼ w − 2 for | w − √ ∼ exp [ − β N Φ + ( w )] for w − 2 ∼ O (1) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  54. V. Saddle Point Method S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  55. Distribution of λ max : Saddle Point Method Prob [ λ max ≤ w , N ] = Prob [ λ 1 ≤ w , λ 2 ≤ w , . . . , λ N ≤ w ] = Z N ( w ) Z N ( ∞ )     � w � w N  − β   � � λ 2 � Z N ( w ) = . . . { d λ i } exp  N i − log | λ j − λ k |  2 −∞ −∞ i =1 j � = k  i S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  56. Distribution of λ max : Saddle Point Method Prob [ λ max ≤ w , N ] = Prob [ λ 1 ≤ w , λ 2 ≤ w , . . . , λ N ≤ w ] = Z N ( w ) Z N ( ∞ )     � w � w N  − β   � � λ 2 � Z N ( w ) = . . . { d λ i } exp  N i − log | λ j − λ k |  2 −∞ −∞ i =1 j � = k  i denominator numerator WALL w λ λ S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  57. Distribution of λ max : Saddle Point Method Prob [ λ max ≤ w , N ] = Prob [ λ 1 ≤ w , λ 2 ≤ w , . . . , λ N ≤ w ] = Z N ( w ) Z N ( ∞ )     � w � w N  − β   � � λ 2 � Z N ( w ) = . . . { d λ i } exp  N i − log | λ j − λ k |  2 −∞ −∞ i =1 j � = k  i denominator numerator WALL w λ λ S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  58. Setting up the Saddle Point Method � w � − β N 2 E ( { λ i } ) � � • Z N ( w ) ∝ d λ i exp −∞ i E ( { λ i } ) = 1 1 � λ 2 � i − log | λ j − λ k | 2 N 2 2 N j � = k i S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  59. Setting up the Saddle Point Method � w � − β N 2 E ( { λ i } ) � � • Z N ( w ) ∝ d λ i exp −∞ i E ( { λ i } ) = 1 1 � λ 2 � i − log | λ j − λ k | 2 N 2 2 N j � = k i • As N → ∞ → discrete sum → continuous integral: �� w � w � w E [ ρ ( λ )] = 1 � λ 2 ρ ( λ ) d λ − ln | λ − λ ′ | ρ ( λ ) ρ ( λ ′ ) d λ d λ ′ 2 −∞ −∞ −∞ S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  60. Setting up the Saddle Point Method � w � − β N 2 E ( { λ i } ) � � • Z N ( w ) ∝ d λ i exp −∞ i E ( { λ i } ) = 1 1 � λ 2 � i − log | λ j − λ k | 2 N 2 2 N j � = k i • As N → ∞ → discrete sum → continuous integral: �� w � w � w E [ ρ ( λ )] = 1 � λ 2 ρ ( λ ) d λ − ln | λ − λ ′ | ρ ( λ ) ρ ( λ ′ ) d λ d λ ′ 2 −∞ −∞ −∞ where the charge density: ρ ( λ ) = 1 � i δ ( λ − λ i ) N S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  61. Setting up the Saddle Point Method � w � − β N 2 E ( { λ i } ) � � • Z N ( w ) ∝ d λ i exp −∞ i E ( { λ i } ) = 1 1 � λ 2 � i − log | λ j − λ k | 2 N 2 2 N j � = k i • As N → ∞ → discrete sum → continuous integral: �� w � w � w E [ ρ ( λ )] = 1 � λ 2 ρ ( λ ) d λ − ln | λ − λ ′ | ρ ( λ ) ρ ( λ ′ ) d λ d λ ′ 2 −∞ −∞ −∞ where the charge density: ρ ( λ ) = 1 � i δ ( λ − λ i ) N � � � �� �� � − β N 2 Z N ( w ) ∝ D ρ ( λ ) exp E [ ρ ( λ )] + C ρ ( λ ) d λ − 1 + O ( N ) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  62. Setting up the Saddle Point Method � w � − β N 2 E ( { λ i } ) � � • Z N ( w ) ∝ d λ i exp −∞ i E ( { λ i } ) = 1 1 � λ 2 � i − log | λ j − λ k | 2 N 2 2 N j � = k i • As N → ∞ → discrete sum → continuous integral: �� w � w � w E [ ρ ( λ )] = 1 � λ 2 ρ ( λ ) d λ − ln | λ − λ ′ | ρ ( λ ) ρ ( λ ′ ) d λ d λ ′ 2 −∞ −∞ −∞ where the charge density: ρ ( λ ) = 1 � i δ ( λ − λ i ) N � � � �� �� � − β N 2 Z N ( w ) ∝ D ρ ( λ ) exp E [ ρ ( λ )] + C ρ ( λ ) d λ − 1 + O ( N ) � • for large N , minimize the action S [ ρ ( λ )] = E [ ρ ( λ )] + C [ ρ ( λ ) d λ − 1] δ S Saddle Point Method: δρ = 0 ⇒ ρ w ( λ ) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  63. Setting up the Saddle Point Method � w � − β N 2 E ( { λ i } ) � � • Z N ( w ) ∝ d λ i exp −∞ i E ( { λ i } ) = 1 1 � λ 2 � i − log | λ j − λ k | 2 N 2 2 N j � = k i • As N → ∞ → discrete sum → continuous integral: �� w � w � w E [ ρ ( λ )] = 1 � λ 2 ρ ( λ ) d λ − ln | λ − λ ′ | ρ ( λ ) ρ ( λ ′ ) d λ d λ ′ 2 −∞ −∞ −∞ where the charge density: ρ ( λ ) = 1 � i δ ( λ − λ i ) N � � � �� �� � − β N 2 Z N ( w ) ∝ D ρ ( λ ) exp E [ ρ ( λ )] + C ρ ( λ ) d λ − 1 + O ( N ) � • for large N , minimize the action S [ ρ ( λ )] = E [ ρ ( λ )] + C [ ρ ( λ ) d λ − 1] δ S Saddle Point Method: δρ = 0 ⇒ ρ w ( λ ) � − β N 2 S [ ρ w ( λ )] � ⇒ Z N ( w ) ∼ exp S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  64. Saddle Point Solution • saddle point δ S δρ = 0 ⇒ � w λ 2 − 2 ρ w ( λ ′ ) ln | λ − λ ′ | d λ ′ + C = 0 −∞ S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  65. Saddle Point Solution • saddle point δ S δρ = 0 ⇒ � w λ 2 − 2 ρ w ( λ ′ ) ln | λ − λ ′ | d λ ′ + C = 0 −∞ • Taking a derivative w.r.t. λ gives a singular integral Eq. � w ρ w ( λ ′ ) d λ ′ λ = P for λ ∈ [ −∞ , w ] → Semi-Hilbert transform λ − λ ′ −∞ − → force balance condition S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  66. Saddle Point Solution • saddle point δ S δρ = 0 ⇒ � w λ 2 − 2 ρ w ( λ ′ ) ln | λ − λ ′ | d λ ′ + C = 0 −∞ • Taking a derivative w.r.t. λ gives a singular integral Eq. � w ρ w ( λ ′ ) d λ ′ λ = P for λ ∈ [ −∞ , w ] → Semi-Hilbert transform λ − λ ′ −∞ − → force balance condition • When w → ∞ : solution − → Wigner semi-circle law √ ρ ∞ ( λ ) = 1 2 − λ 2 π S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  67. Saddle Point Solution • saddle point δ S δρ = 0 ⇒ � w λ 2 − 2 ρ w ( λ ′ ) ln | λ − λ ′ | d λ ′ + C = 0 −∞ • Taking a derivative w.r.t. λ gives a singular integral Eq. � w ρ w ( λ ′ ) d λ ′ λ = P for λ ∈ [ −∞ , w ] → Semi-Hilbert transform λ − λ ′ −∞ − → force balance condition • When w → ∞ : solution − → Wigner semi-circle law √ ρ ∞ ( λ ) = 1 2 − λ 2 π Exact solution for all w : [D. S. Dean & S.M., PRL, 97, 160201 (2006); PRE, 77, 041108 (2008)] S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  68. � � � � �� �� �� �� Exact Saddle Point Solution • Exact solution ( D. Dean and S.M., 2006, 2008 ): √ √  1 2 − λ 2 for w ≥ 2 π   ρ w ( λ ) = √ √ λ + L ( w )  2 π √ w − λ [ w + L ( w ) − 2 λ ] for w < 2  √ w 2 + 6 − w ] / 3 where L ( w ) = [2 S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  69. Exact Saddle Point Solution • Exact solution ( D. Dean and S.M., 2006, 2008 ): √ √  1 2 − λ 2 for w ≥ 2 π   ρ w ( λ ) = √ √ λ + L ( w )  2 π √ w − λ [ w + L ( w ) − 2 λ ] for w < 2  √ w 2 + 6 − w ] / 3 where L ( w ) = [2 ρ w (λ) vs. λ for different charge density W W > W < 2 2 W= 2 w w w � � � � �� �� �� �� − w − − L(w) 2 2 2 2 2 pushed critical unpushed (STABLE) (UNSTABLE) W= 2 CRITICAL POINT S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  70. Exact Saddle Point Solution • Exact solution ( D. Dean and S.M., 2006, 2008 ): √ √  1 2 − λ 2 for w ≥ 2 π   ρ w ( λ ) = √ √ λ + L ( w )  2 π √ w − λ [ w + L ( w ) − 2 λ ] for w < 2  √ w 2 + 6 − w ] / 3 where L ( w ) = [2 ρ w (λ) vs. λ for different charge density W W > W < 2 2 W= 2 w w w � � � � �� �� �� �� − w − − L(w) 2 2 2 2 2 pushed critical unpushed (STABLE) (UNSTABLE) W= 2 CRITICAL POINT S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  71. Left Large Deviation Function Prob [ λ max ≤ w , N ] = Z N ( w ) − β N 2 { S [ ρ w ( λ )] − S [ ρ ∞ ( λ )] } � � ∼ exp Z N ( ∞ ) − β N 2 Φ − ( w ) � � ∼ exp S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  72. Left Large Deviation Function Prob [ λ max ≤ w , N ] = Z N ( w ) − β N 2 { S [ ρ w ( λ )] − S [ ρ ∞ ( λ )] } � � ∼ exp Z N ( ∞ ) − β N 2 Φ − ( w ) � � ∼ exp N →∞ − 1 lim N 2 ln [ P ( w , N )] = Φ − ( w ) → left large deviation function physically Φ − ( w ) − → energy cost in pushing the Coulomb gas S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  73. Left Large Deviation Function Prob [ λ max ≤ w , N ] = Z N ( w ) − β N 2 { S [ ρ w ( λ )] − S [ ρ ∞ ( λ )] } � � ∼ exp Z N ( ∞ ) − β N 2 Φ − ( w ) � � ∼ exp N →∞ − 1 lim N 2 ln [ P ( w , N )] = Φ − ( w ) → left large deviation function physically Φ − ( w ) − → energy cost in pushing the Coulomb gas 1 � 36 w 2 − w 4 − (15 w + w 3 ) � w 2 + 6 Φ − ( w ) = 108 √ � �� � 6 + w 2 ) + 27 ln(18) − 2 ln( w + for w < 2 ( Dean & S.M., 2006,2008 ) S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

  74. Left Large Deviation Function Prob [ λ max ≤ w , N ] = Z N ( w ) − β N 2 { S [ ρ w ( λ )] − S [ ρ ∞ ( λ )] } � � ∼ exp Z N ( ∞ ) − β N 2 Φ − ( w ) � � ∼ exp N →∞ − 1 lim N 2 ln [ P ( w , N )] = Φ − ( w ) → left large deviation function physically Φ − ( w ) − → energy cost in pushing the Coulomb gas 1 � 36 w 2 − w 4 − (15 w + w 3 ) � w 2 + 6 Φ − ( w ) = 108 √ � �� � 6 + w 2 ) + 27 ln(18) − 2 ln( w + for w < 2 ( Dean & S.M., 2006,2008 ) √ √ 2 − w ) 3 as w → 1 Note also that Φ − ( w ) ≈ 2 ( 2 from below √ 6 S.N. Majumdar Top eigenvalue of a random matrix: Large deviations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend