introduction to bayesian statistics
play

Introduction to Bayesian Statistics Lecture 4: Multiparameter models - PowerPoint PPT Presentation

Introduction to Bayesian Statistics Lecture 4: Multiparameter models (I) Rung-Ching Tsai Department of Mathematics National Taiwan Normal University March 18, 2015 Noninformative prior distributions Proper and improper prior distributions


  1. Introduction to Bayesian Statistics Lecture 4: Multiparameter models (I) Rung-Ching Tsai Department of Mathematics National Taiwan Normal University March 18, 2015

  2. Noninformative prior distributions • Proper and improper prior distributions • Unnormalized densities • Uniform prior distributions on different scales • Some examples ◦ Probability parameter θ ∈ (0 , 1) • One possibility: p ( θ ) = 1 [proper] • Another possibility: p (logit θ ) ∝ 1 corresponds to p ( θ ) ∝ θ − 1 (1 − θ ) − 1 [improper] ◦ Location parameter θ unconstrained y , σ 2 • One possibility: p ( θ ) ∝ 1 [improper] ⇒ p ( θ | y ) ≈ normal( θ | ¯ n ) ◦ Scale parameter σ > 0 • One possibility: p ( σ ) ∝ 1 [improper] • Another possibility: p (log σ 2 ) ∝ 1 corresponds to p ( σ 2 ) ∝ σ − 2 [improper] 2 of 17

  3. Noninformative prior distributions: Jeffrey’s principle d φ | = p ( θ ) | h ′ ( θ ) | − 1 • φ = h ( θ ) , p ( φ ) = p ( θ ) | d θ • Jeffrey’s principle leads to a non informative prior density: p ( θ ) ∝ [ J ( θ )] 1 / 2 , where J ( θ ) is the Fisher information for θ : �� d log p ( y | θ ) � 2 � � d 2 log p ( y | θ ) � J ( θ ) = E | θ = − E | θ d θ 2 d θ • Jeffrey’s prior model is invariant to parameterization, evaluate J ( φ ) at θ = h − 1 ( φ ): � 2 � 2 � d 2 log p ( y | φ ) d 2 log p ( y | θ = h − 1 ( φ )) � � � � � d θ d θ � � � � J ( φ ) = − E = − E = J ( θ ) ; � � � � d φ 2 d θ 2 d φ d φ � � � � thus, J ( φ ) 1 / 2 = J ( θ ) 1 / 2 | d θ d φ | 3 of 17

  4. Examples: Various noninformative prior distributions � n � θ y (1 − θ ) n − y • y | θ ∼ binomial( n , θ ), p ( y | θ ) = y • Jeffrey’s prior density p ( θ ) ∝ [ J ( θ )] 1 / 2 : log p ( y | θ ) = constant + y log θ + ( n − y )log(1 − θ ) . � d 2 log p ( y | θ ) � n J ( θ ) = − E | θ = d θ 2 θ (1 − θ ) θ − 1 / 2 (1 − θ ) − 1 / 2 . Jeffreys ′ prior ⇒ p ( θ ) ∝ • Three alternatives of prior ◦ Jeffreys’ prior: θ ∼ Beta( 1 2 , 1 2 ) ◦ uniform prior: θ ∼ Beta(1 , 1), i.e., p ( θ ) = 1 ◦ improper prior: θ ∼ Beta(0 , 0) i.e., p (log θ ) ∝ 1 4 of 17

  5. From single-parameter to multiparameter models • The reality of applied statistics: there are always several (maybe many) unknown parameters! • BUT the interest usually lies in only a few of these (parameters of interest) while others are regarded as nuisance parameters for which we have no interest in making inferences but which are required in order to construct a realistic model. • At this point the simple conceptual framework of the Bayesian approach reveals its principal advantage over other forms of inference. 5 of 17

  6. Bayesian approach to multiparameter models • The Bayesian approach is clear: Obtain the joint posterior distribution of all unknowns, then integrate over the nuisance parameters to leave the marginal posterior distribution for the parameters of interest. • Alternatively using simulation, draw samples from the entire joint posterior distribution (even this may be computationally difficult), look at the parameters of interest and ignore the rest. 6 of 17

  7. Parameter of interest and nuisance parameter • Suppose model parameter θ has two parts θ = ( θ 1 , θ 2 ) ◦ Parameter of interest: θ 1 ◦ Nuisance parameter: θ 2 • For example y | µ, σ 2 ∼ normal( µ, σ 2 ) , ◦ Unknown: µ and σ 2 ◦ Parameter of interest (usually, not always): µ ◦ Nuisance parameter: σ 2 • Approach to obtain p ( θ 1 | y ) ◦ Averaging over nuisance parameters ◦ Factoring the joint posterior ◦ A strategy for computation: Conditional simulation via Gibbs sampler 7 of 17

  8. Posterior distribution of θ = ( θ 1 , θ 2 ) • Prior of θ : p ( θ ) = p ( θ 1 , θ 2 ) • Likelihood of θ : p ( y | θ ) = p ( y | θ 1 , θ 2 ) • Posterior of θ = ( θ 1 , θ 2 ) given y : p ( θ 1 , θ 2 | y ) ∝ p ( θ 1 , θ 2 ) p ( y | θ 1 , θ 2 ) . 8 of 17

  9. Approaches to obtain marginal posterior of θ 1 , p ( θ 1 | y ) • Joint posterior of θ 1 and θ 2 : p ( θ 1 , θ 2 | y ) ∝ p ( θ 1 , θ 2 ) p ( y | θ 1 , θ 2 ) • Approaches to obtain marginal posterior density p ( θ 1 | y ) ◦ By averaging or integrating over the nuisance parameter θ 2 : � p ( θ 1 | y ) = p ( θ 1 , θ 2 | y ) d θ 2 . ◦ By factoring the joint posterior: � p ( θ 1 | y ) = p ( θ 1 , θ 2 | y ) d θ 2 � = p ( θ 1 | θ 2 , y ) p ( θ 2 | y ) d θ 2 . (1) • p ( θ 1 | y ) is a mixture of the conditional posterior distributions given the nuisance parameter θ 2 , p ( θ 1 | θ 2 , y ). • The weighting function p ( θ 2 | y ) combines evidence from data and prior. • θ 2 can be categorical (discrete) and may take only a few possible values representing, for example, different sub-models. 9 of 17

  10. A strategy for computation: Simulations instead of integration We rarely evaluate integral (1) explicitly, but it suggests an important strategy for constructing and computing with multiparameter models, using simulations. • Successive conditional simulations ◦ Draw θ 2 from its marginal posterior distribution, p ( θ 2 | y ). ◦ Draw θ 1 from conditional posterior distribution given the drawn value of θ 2 , p ( θ 1 | θ 2 , y ). • All-Others conditional simulations (Gibbs sampler) ◦ Draw θ ( t +1) from conditional posterior distribution given the previous 1 drawn value of θ ( t ) 2 , p ( θ 1 | θ ( t ) 2 , y ). ◦ Draw θ ( t +1) from conditional posterior distribution given the drawn 2 value of θ ( t ) 1 , p ( θ 2 | θ ( t ) 1 , y ). ◦ Iterating the procedure will ultimately generate samples from the marginal posterior distribution of p ( θ 1 , θ 2 | y ). 10 of 17

  11. Multiparameter model: the normal model (I) iid ∼ normal( µ, σ 2 ), both µ and σ 2 unknown, use Bayesian • y 1 , · · · , y n approach to estimate µ . ◦ choose a prior for ( µ, σ 2 ), take noninformative priors: p ( µ, σ 2 ) = p ( µ ) p ( σ 2 ) ∝ 1 · ( σ 2 ) − 1 = σ − 2 • prior independence of location and scale • p ( µ ) ∝ 1: noninformative or uniform but improper prior • p (log σ 2 ) ∝ 1 ⇒ p ( σ 2 ) ∝ ( σ 2 ) − 1 : noninformative or uniform on log σ 2 ◦ likelihood: n 1 � − 1 � p ( y | µ, σ 2 ) � 2 σ 2 ( y i − µ ) 2 = √ exp 2 πσ i =1 � n � − 1 � σ − n exp ( y i − µ ) 2 ∝ 2 σ 2 ( i =1 11 of 17

  12. Joint posterior distribution, p ( µ, σ 2 | y ) iid ∼ normal( µ, σ 2 ) • y 1 , · · · , y n ◦ prior of ( µ, σ 2 ): p ( µ, σ 2 ) = p ( µ ) p ( σ 2 ) ∝ 1 · ( σ 2 ) − 1 = σ − 2 ◦ find the joint posterior distribution of ( µ, σ 2 ): p ( µ, σ 2 | y ) p ( µ, σ 2 ) p ( y | µ, σ 2 ) ∝ � n � − 1 � σ − n − 2 exp ( y i − µ ) 2 ∝ 2 σ 2 ( i =1 � n � − 1 y ) 2 + n (¯ σ − n − 2 exp � y − µ ) 2 = 2 σ 2 ( ( y i − ¯ i =1 � � − 1 2 σ 2 [( n − 1) s 2 + n (¯ σ − n − 2 exp y − µ ) 2 ] = . where s 2 = � n 1 y ) 2 , the sample variance. The sufficient i =1 ( y i − ¯ n − 1 statistics are s 2 and ¯ y . 12 of 17

  13. Conditional posterior distribution, p ( µ | σ 2 , y ) • p ( µ, σ 2 | y ) = p ( µ | σ 2 , y ) p ( σ 2 | y ) • Use the case with single parameter µ with known σ 2 and non informative prior p ( µ ) ∝ 1, we have y , σ 2 p ( µ | σ 2 , y ) ∼ normal(¯ n ) . 13 of 17

  14. Marginal posterior distribution, p ( σ 2 | y ) • p ( µ, σ 2 | y ) = p ( µ | σ 2 , y ) p ( σ 2 | y ) • p ( σ 2 | y ) requires averaging the joint distribution 2 σ 2 [( n − 1) s 2 + n (¯ p ( µ, σ 2 | y ) ∝ σ − n − 2 exp − 1 y − µ ) 2 ] � � over µ , that is, evaluating the simple normal integral � 2 πσ 2 � � − 1 � y − µ ) 2 exp 2 σ 2 n (¯ d µ = , n thus, − ( n − 1) s 2 � � p ( σ 2 | y ) ( σ 2 ) − ( n +1) / 2 exp ∝ 2 σ 2 σ 2 | y Inv − χ 2 ( n − 1 , s 2 ) , ∼ which is a scaled inverse- χ 2 distribution. 14 of 17

  15. Analytic form of marginal posterior distribution of µ • µ is typically the estimand of interest, so ultimate objective of the Bayesian analysis is the marginal posterior distribution of µ . This can be obtained by integrating σ 2 out of the joint posterior distribution. Easily done by simulation: first draw σ 2 from p ( σ 2 | y ), then draw µ from p ( µ | σ 2 , y ). • The posterior distribution of µ , p ( µ | y ), can be thought of as a mixture of normal distributions mixed over the scaled inverse chi-squared distribution for the variance - a rare case where analytic results are available. 15 of 17

  16. Performing the integration • We start by integrating the joint posterior density over σ 2 � ∞ p ( µ, σ 2 | y ) d σ 2 p ( µ | y ) = 0 2 σ 2 , A = ( n − 1) s 2 + n ( µ − ¯ A y ) 2 , the • With the substitution z = result is an unnormalized gamma integral: � ∞ A − n / 2 z ( n − 2) / 2 exp( − z ) dz p ( µ | y ) ∝ 0 [( n − 1) s 2 + n ( µ − ¯ y ) 2 ] − n / 2 ∝ � − n / 2 y ) 2 � 1 + n ( µ − ¯ ∝ ( n − 1) s 2 y , s 2 • µ | y ∼ t n − 1 (¯ n ) . 16 of 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend