bounds on the solution of sylvester equation and
play

Bounds on the solution of Sylvester equation and something else - PowerPoint PPT Presentation

Bounds on the solution of Sylvester equation and something else Ninoslav Truhar Department of Mathematics, University of Osijek ntruhar@mathos.hr 24.04.2009 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 1 / 22 Coauthors:


  1. Estimating the size of the solution AX − XB = GF ∗ the main tool; Consider: factorized version of ADI iterations: 1 solve ( A − β i I ) X i +1 / 2 = X i ( B − β i I ) + GF ∗ for X i +1 / 2 ; 2 solve X i +1 ( B − α i I ) = ( A − α i I ) X i +1 / 2 − GF ∗ for X i +1 , where { α i } � = { β i } are given two sets of parameters. It holods X i +1 − X = ( A − α i I )( A − β i I ) − 1 ( X i − X )( B − β i I )( B − α i I ) − 1 ,     i i � ( A − α j I )( A − β j I ) − 1  ( X 0 − X ) � ( B − β j I )( B − α j I ) − 1  , =   j =0 j =0 In addition, if { α i } n j =1 = σ ( A ) or { β j } m j =1 = σ ( B ), N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 6 / 22

  2. Estimating the size of the solution AX − XB = GF ∗ the main tool; Consider: factorized version of ADI iterations: 1 solve ( A − β i I ) X i +1 / 2 = X i ( B − β i I ) + GF ∗ for X i +1 / 2 ; 2 solve X i +1 ( B − α i I ) = ( A − α i I ) X i +1 / 2 − GF ∗ for X i +1 , where { α i } � = { β i } are given two sets of parameters. It holods X i +1 − X = ( A − α i I )( A − β i I ) − 1 ( X i − X )( B − β i I )( B − α i I ) − 1 ,     i i � ( A − α j I )( A − β j I ) − 1  ( X 0 − X ) � ( B − β j I )( B − α j I ) − 1  , =   j =0 j =0 In addition, if { α i } n j =1 = σ ( A ) or { β j } m j =1 = σ ( B ), then X min { m , n } = X , N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 6 / 22

  3. Estimating the size of the solution AX − XB = GF ∗ the main tool; Consider: factorized version of ADI iterations: 1 solve ( A − β i I ) X i +1 / 2 = X i ( B − β i I ) + GF ∗ for X i +1 / 2 ; 2 solve X i +1 ( B − α i I ) = ( A − α i I ) X i +1 / 2 − GF ∗ for X i +1 , where { α i } � = { β i } are given two sets of parameters. It holods X i +1 − X = ( A − α i I )( A − β i I ) − 1 ( X i − X )( B − β i I )( B − α i I ) − 1 ,     i i � ( A − α j I )( A − β j I ) − 1  ( X 0 − X ) � ( B − β j I )( B − α j I ) − 1  , =   j =0 j =0 In addition, if { α i } n j =1 = σ ( A ) or { β j } m j =1 = σ ( B ), then X min { m , n } = X , the Hamilton-Cayley theorem, p ( A ) ≡ 0 for p ( λ ) def = det( λ I − A ) and q ( B ) ≡ 0 for q ( λ ) def = det( λ I − B ). N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 6 / 22

  4. Low Rank ADI (LRADI) Method for Sylvester Equations N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 7 / 22

  5. Low Rank ADI (LRADI) Method for Sylvester Equations For A ∈ R n × n , B ∈ R m × m G ∈ R m × r and F ∈ R n × r , N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 7 / 22

  6. Low Rank ADI (LRADI) Method for Sylvester Equations For A ∈ R n × n , B ∈ R m × m G ∈ R m × r and F ∈ R n × r , AX − XB = GF ∗ . consider Sylvester equation: N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 7 / 22

  7. Low Rank ADI (LRADI) Method for Sylvester Equations For A ∈ R n × n , B ∈ R m × m G ∈ R m × r and F ∈ R n × r , AX − XB = GF ∗ . consider Sylvester equation: Input : (a) A , B , G , and F ; (b) ADI shifts { β 1 , β 2 , . . . } , { α 1 , α 2 , . . . } ; (c) k , the number of ADI steps; N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 7 / 22

  8. Low Rank ADI (LRADI) Method for Sylvester Equations For A ∈ R n × n , B ∈ R m × m G ∈ R m × r and F ∈ R n × r , AX − XB = GF ∗ . consider Sylvester equation: Input : (a) A , B , G , and F ; (b) ADI shifts { β 1 , β 2 , . . . } , { α 1 , α 2 , . . . } ; (c) k , the number of ADI steps; Output: Z ( m × kr ) , D ( kr × kr ) , and Y ( n × kr ) such that ZDY ∗ ≈ X Z 1 = ( A − β 1 I ) − 1 G ; ( Y ∗ ) 1 = F ∗ ( B − α 1 I ) − 1 ; 1. 2. for i = 1 , 2 , . . . , k do Z i = Z i − 1 + ( β i +1 − α i )( A − β i +1 I ) − 1 Z i − 1 ; 3. ( Y ∗ ) i = ( Y ∗ ) i − 1 + ( α i +1 − β i ) ( Y ∗ ) i − 1 ( B − α i +1 I ) − 1 ; 4. 5. end for; 6. D = diag (( β 1 − α 1 ) I r , . . . , ( β k − α k ) I r ). N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 7 / 22

  9. Low Rank ADI (LRADI) Method for Sylvester Equations For A ∈ R n × n , B ∈ R m × m G ∈ R m × r and F ∈ R n × r , AX − XB = GF ∗ . consider Sylvester equation: Input : (a) A , B , G , and F ; (b) ADI shifts { β 1 , β 2 , . . . } , { α 1 , α 2 , . . . } ; (c) k , the number of ADI steps; Output: Z ( m × kr ) , D ( kr × kr ) , and Y ( n × kr ) such that ZDY ∗ ≈ X Z 1 = ( A − β 1 I ) − 1 G ; ( Y ∗ ) 1 = F ∗ ( B − α 1 I ) − 1 ; 1. 2. for i = 1 , 2 , . . . , k do Z i = Z i − 1 + ( β i +1 − α i )( A − β i +1 I ) − 1 Z i − 1 ; 3. ( Y ∗ ) i = ( Y ∗ ) i − 1 + ( α i +1 − β i ) ( Y ∗ ) i − 1 ( B − α i +1 I ) − 1 ; 4. 5. end for; 6. D = diag (( β 1 − α 1 ) I r , . . . , ( β k − α k ) I r ). Recall: if { α i } n j =1 = σ ( A ) or { β j } m j =1 = σ ( B ), N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 7 / 22

  10. Low Rank ADI (LRADI) Method for Sylvester Equations For A ∈ R n × n , B ∈ R m × m G ∈ R m × r and F ∈ R n × r , AX − XB = GF ∗ . consider Sylvester equation: Input : (a) A , B , G , and F ; (b) ADI shifts { β 1 , β 2 , . . . } , { α 1 , α 2 , . . . } ; (c) k , the number of ADI steps; Output: Z ( m × kr ) , D ( kr × kr ) , and Y ( n × kr ) such that ZDY ∗ ≈ X Z 1 = ( A − β 1 I ) − 1 G ; ( Y ∗ ) 1 = F ∗ ( B − α 1 I ) − 1 ; 1. 2. for i = 1 , 2 , . . . , k do Z i = Z i − 1 + ( β i +1 − α i )( A − β i +1 I ) − 1 Z i − 1 ; 3. ( Y ∗ ) i = ( Y ∗ ) i − 1 + ( α i +1 − β i ) ( Y ∗ ) i − 1 ( B − α i +1 I ) − 1 ; 4. 5. end for; 6. D = diag (( β 1 − α 1 ) I r , . . . , ( β k − α k ) I r ). Recall: if { α i } n j =1 = σ ( A ) or { β j } m j =1 = σ ( B ), min { m , n } ( β j − α j ) Z ( j ) Y ( j ) ∗ � then X = X min { m , n } = j =1 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 7 / 22

  11. Estimating the size of the solution N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 8 / 22

  12. Estimating the size of the solution Consider AX − XB = GF ∗ , where A and B are diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 , N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 8 / 22

  13. Estimating the size of the solution Consider AX − XB = GF ∗ , where A and B are diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 , min { m , n } m n | τ ( ℓ, j − 1) | � ˆ | σ ( i , j − 1) | · � ˆ g i � f ℓ � � � � � X � ≤ � S �� T − 1 � | β j − α j | , | λ i − β j | | µ ℓ − α j | j =1 i =1 ℓ =1 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 8 / 22

  14. Estimating the size of the solution Consider AX − XB = GF ∗ , where A and B are diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 , min { m , n } m n | τ ( ℓ, j − 1) | � ˆ | σ ( i , j − 1) | · � ˆ g i � f ℓ � � � � � X � ≤ � S �� T − 1 � | β j − α j | , | λ i − β j | | µ ℓ − α j | j =1 i =1 ℓ =1 j − 1 λ i − α s � σ ( i , j − 1) = , σ ( i , 0) = 1 , i = 1 , . . . , m , λ i − β s s =1 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 8 / 22

  15. Estimating the size of the solution Consider AX − XB = GF ∗ , where A and B are diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 , min { m , n } m n | τ ( ℓ, j − 1) | � ˆ | σ ( i , j − 1) | · � ˆ g i � f ℓ � � � � � X � ≤ � S �� T − 1 � | β j − α j | , | λ i − β j | | µ ℓ − α j | j =1 i =1 ℓ =1 j − 1 λ i − α s � σ ( i , j − 1) = , σ ( i , 0) = 1 , i = 1 , . . . , m , λ i − β s s =1 j − 1 µ i − β s � τ ( i , j − 1) = , τ ( i , 0) = 1 , i = 1 , . . . , n . µ i − α s s =1 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 8 / 22

  16. Estimating the size of the solution Consider AX − XB = GF ∗ , where A and B are diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 , min { m , n } m n | τ ( ℓ, j − 1) | � ˆ | σ ( i , j − 1) | · � ˆ g i � f ℓ � � � � � X � ≤ � S �� T − 1 � | β j − α j | , | λ i − β j | | µ ℓ − α j | j =1 i =1 ℓ =1 j − 1 λ i − α s � σ ( i , j − 1) = , σ ( i , 0) = 1 , i = 1 , . . . , m , λ i − β s s =1 j − 1 µ i − β s � τ ( i , j − 1) = , τ ( i , 0) = 1 , i = 1 , . . . , n . µ i − α s s =1 F ∗ = F ∗ T g i is the i th row of ˆ ˆ f i is the i th column of ˆ G = S − 1 G ; ˆ N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 8 / 22

  17. Example N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 9 / 22

  18. Example Let A = S diag (1 , 2 , 3 , 4 , 5) S − 1 where   5 . 04 − 4 . 2 0 . 0013 − 0 . 003 0 . 002 − 3 . 91 − 3 . 67 0 . 0028 0 . 01 0 . 004     S = 0 . 001 0 . 0035 − 1 . 55 − 0 . 11 − 0 . 21     − 0 . 002 0 . 0011 0 . 32 − 1 . 82 0 . 42   − 0 . 004 0 . 0025 0 . 79 1 . 29 − 0 . 89 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 9 / 22

  19. Example Let A = S diag (1 , 2 , 3 , 4 , 5) S − 1 where   5 . 04 − 4 . 2 0 . 0013 − 0 . 003 0 . 002 − 3 . 91 − 3 . 67 0 . 0028 0 . 01 0 . 004     S = 0 . 001 0 . 0035 − 1 . 55 − 0 . 11 − 0 . 21     − 0 . 002 0 . 0011 0 . 32 − 1 . 82 0 . 42   − 0 . 004 0 . 0025 0 . 79 1 . 29 − 0 . 89 Let B = T diag (11 , 12 , 13 , 14 , 5 . 0001) T − 1 where  5 . 0443 − 4 . 1948 0 . 0022 0 . 0062 0 . 0023  − 3 . 9041 − 3 . 6609 0 . 0032 0 . 0105 0 . 0045   T = 0 . 0019 0 . 0101 − 1 . 5425 − 0 . 1093 − 0 . 2076  .     0 . 0005 0 . 0061 0 . 3232 − 1 . 8143 0 . 4213  0 . 0019 0 . 0088 0 . 7907 1 . 2944 − 0 . 8837 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 9 / 22

  20. Example N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 10 / 22

  21. Example � T � T � 2 � 2 . 2 5 0 0 0 4 . 5 0 0 0 G = , F = . 5 1 0 0 0 5 . 1 1 . 1 0 0 0 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 10 / 22

  22. Example � T � T � 2 � 2 . 2 5 0 0 0 4 . 5 0 0 0 G = , F = . 5 1 0 0 0 5 . 1 1 . 1 0 0 0 Consider AX − XB = GF ∗ , N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 10 / 22

  23. Example � T � T � 2 � 2 . 2 5 0 0 0 4 . 5 0 0 0 G = , F = . 5 1 0 0 0 5 . 1 1 . 1 0 0 0 Consider AX − XB = GF ∗ , � X � = 4 . 4884 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 10 / 22

  24. Example � T � T � 2 � 2 . 2 5 0 0 0 4 . 5 0 0 0 G = , F = . 5 1 0 0 0 5 . 1 1 . 1 0 0 0 Consider AX − XB = GF ∗ , � X � = 4 . 4884 � X � ≤ 176 . 5 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 10 / 22

  25. Example � T � T � 2 � 2 . 2 5 0 0 0 4 . 5 0 0 0 G = , F = . 5 1 0 0 0 5 . 1 1 . 1 0 0 0 Consider AX − XB = GF ∗ , � X � = 4 . 4884 � X � ≤ 176 . 5 � − 1 �� vec ( W ) � ≤ 34469 ( I ⊗ A ) − ( B T ⊗ I ) � � X � ≤ � N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 10 / 22

  26. Error Bound for Sylvester equation N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 11 / 22

  27. Error Bound for Sylvester equation Consider AX − XB = GF ∗ , where A and B are diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 , N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 11 / 22

  28. Error Bound for Sylvester equation Consider AX − XB = GF ∗ , where A and B are diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 , Let X k obtained by LRADI, s.t. X k ≈ X , δ X = X − X k N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 11 / 22

  29. Error Bound for Sylvester equation Consider AX − XB = GF ∗ , where A and B are diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 , Let X k obtained by LRADI, s.t. X k ≈ X , δ X = X − X k min { m , n } m n | τ ( ℓ, j − 1) | � ˆ | σ ( i , j − 1) | · � ˆ g i � f ℓ � � � � � δ X � ≤ � S �� T − 1 � | β j − α j | , | λ i − β j | | µ ℓ − α j | j = k +1 i =1 ℓ =1 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 11 / 22

  30. Error Bound for Sylvester equation Consider AX − XB = GF ∗ , where A and B are diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 , Let X k obtained by LRADI, s.t. X k ≈ X , δ X = X − X k min { m , n } m n | τ ( ℓ, j − 1) | � ˆ | σ ( i , j − 1) | · � ˆ g i � f ℓ � � � � � δ X � ≤ � S �� T − 1 � | β j − α j | , | λ i − β j | | µ ℓ − α j | j = k +1 i =1 ℓ =1 j − 1 λ i − α s � σ ( i , j − 1) = , σ ( i , 0) = 1 , i = 1 , . . . , m , λ i − β s s =1 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 11 / 22

  31. Error Bound for Sylvester equation Consider AX − XB = GF ∗ , where A and B are diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 , Let X k obtained by LRADI, s.t. X k ≈ X , δ X = X − X k min { m , n } m n | τ ( ℓ, j − 1) | � ˆ | σ ( i , j − 1) | · � ˆ g i � f ℓ � � � � � δ X � ≤ � S �� T − 1 � | β j − α j | , | λ i − β j | | µ ℓ − α j | j = k +1 i =1 ℓ =1 j − 1 λ i − α s � σ ( i , j − 1) = , σ ( i , 0) = 1 , i = 1 , . . . , m , λ i − β s s =1 j − 1 µ i − β s � τ ( i , j − 1) = , τ ( i , 0) = 1 , i = 1 , . . . , n . µ i − α s s =1 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 11 / 22

  32. Error Bound for Sylvester equation Consider AX − XB = GF ∗ , where A and B are diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 , Let X k obtained by LRADI, s.t. X k ≈ X , δ X = X − X k min { m , n } m n | τ ( ℓ, j − 1) | � ˆ | σ ( i , j − 1) | · � ˆ g i � f ℓ � � � � � δ X � ≤ � S �� T − 1 � | β j − α j | , | λ i − β j | | µ ℓ − α j | j = k +1 i =1 ℓ =1 j − 1 λ i − α s � σ ( i , j − 1) = , σ ( i , 0) = 1 , i = 1 , . . . , m , λ i − β s s =1 j − 1 µ i − β s � τ ( i , j − 1) = , τ ( i , 0) = 1 , i = 1 , . . . , n . µ i − α s s =1 F ∗ = F ∗ T g i is the i th row of ˆ ˆ f i is the i th column of ˆ G = S − 1 G ; ˆ N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 11 / 22

  33. Error Bound for Lyapunov equation N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 12 / 22

  34. Error Bound for Lyapunov equation Let X k be obtained by LRADI, s.t. X k ≈ X N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 12 / 22

  35. Error Bound for Lyapunov equation Let X k be obtained by LRADI, s.t. X k ≈ X How close is X k to X ? N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 12 / 22

  36. Error Bound for Lyapunov equation Let X k be obtained by LRADI, s.t. X k ≈ X How close is X k to X ? For the case of Lyapunov equation: AX − XA ∗ = GG ∗ , A = S Λ S − 1 diagonalizable N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 12 / 22

  37. Error Bound for Lyapunov equation Let X k be obtained by LRADI, s.t. X k ≈ X How close is X k to X ? For the case of Lyapunov equation: AX − XA ∗ = GG ∗ , A = S Λ S − 1 diagonalizable ( T . and Veseli´ c 2007): m m σ ( j , k ) 2 · � ˆ � X − X k � ≤ � S � 2 � � g k � 2 ( − 2 Re ( α j )) j = k +1 k =1 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 12 / 22

  38. Error Bound for Lyapunov equation Let X k be obtained by LRADI, s.t. X k ≈ X How close is X k to X ? For the case of Lyapunov equation: AX − XA ∗ = GG ∗ , A = S Λ S − 1 diagonalizable ( T . and Veseli´ c 2007): m m σ ( j , k ) 2 · � ˆ � X − X k � ≤ � S � 2 � � g k � 2 ( − 2 Re ( α j )) j = k +1 k =1 j − 1 1 1 λ k − ¯ α t � σ (1 , k ) = , and σ ( j , k ) = for j > 1 . λ k + α 1 λ k + α j λ k + α t t =1 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 12 / 22

  39. Error Bound for Lyapunov equation Let X k be obtained by LRADI, s.t. X k ≈ X How close is X k to X ? For the case of Lyapunov equation: AX − XA ∗ = GG ∗ , A = S Λ S − 1 diagonalizable ( T . and Veseli´ c 2007): m m σ ( j , k ) 2 · � ˆ � X − X k � ≤ � S � 2 � � g k � 2 ( − 2 Re ( α j )) j = k +1 k =1 j − 1 1 1 λ k − ¯ α t � σ (1 , k ) = , and σ ( j , k ) = for j > 1 . λ k + α 1 λ k + α j λ k + α t t =1 g k is the k th row of ˆ G = S − 1 G ˆ N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 12 / 22

  40. Perturbation Bound for Sylvester equation N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 13 / 22

  41. Perturbation Bound for Sylvester equation Consider perturbed Sylvester equation ( A + δ A )( X + δ X ) − ( X + δ X )( B + δ B ) = ( G + δ G )( F + δ F ) ∗ , N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 13 / 22

  42. Perturbation Bound for Sylvester equation Consider perturbed Sylvester equation ( A + δ A )( X + δ X ) − ( X + δ X )( B + δ B ) = ( G + δ G )( F + δ F ) ∗ , Using N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 13 / 22

  43. Perturbation Bound for Sylvester equation Consider perturbed Sylvester equation ( A + δ A )( X + δ X ) − ( X + δ X )( B + δ B ) = ( G + δ G )( F + δ F ) ∗ , Using A δ X − δ X B ≈ G δ F ∗ + δ G F ∗ − δ A X + X δ B , N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 13 / 22

  44. Perturbation Bound for Sylvester equation Consider perturbed Sylvester equation ( A + δ A )( X + δ X ) − ( X + δ X )( B + δ B ) = ( G + δ G )( F + δ F ) ∗ , Using A δ X − δ X B ≈ G δ F ∗ + δ G F ∗ − δ A X + X δ B , one gets: δ X ≈ δ X 1 + δ X 2 + δ X 3 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 13 / 22

  45. Perturbation Bound for Sylvester equation Consider perturbed Sylvester equation ( A + δ A )( X + δ X ) − ( X + δ X )( B + δ B ) = ( G + δ G )( F + δ F ) ∗ , Using A δ X − δ X B ≈ G δ F ∗ + δ G F ∗ − δ A X + X δ B , one gets: δ X ≈ δ X 1 + δ X 2 + δ X 3 A δ X 1 − δ X 1 B = − δ A X , A δ X 2 − δ X 2 B = − X δ B , ( G δ F ∗ + δ G F ∗ ) . A δ X 3 − δ X 3 B = N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 13 / 22

  46. Perturbation Bound for Sylvester equation N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 14 / 22

  47. Perturbation Bound for Sylvester equation The following perturbation bound holds: N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 14 / 22

  48. Perturbation Bound for Sylvester equation The following perturbation bound holds: for A and B diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 . N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 14 / 22

  49. Perturbation Bound for Sylvester equation The following perturbation bound holds: for A and B diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 . and sufficiently small η = max {� δ A � , � δ B � , � δ G � , � δ F �} , N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 14 / 22

  50. Perturbation Bound for Sylvester equation The following perturbation bound holds: for A and B diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 . and sufficiently small η = max {� δ A � , � δ B � , � δ G � , � δ F �} , � � δ X � κ ( T ) � S �� S − 1 δ A � + κ ( S ) � T − 1 �� δ BT � ≤ � X � + � S �� T − 1 �� S − 1 ( G δ F ∗ + δ GF ∗ ) T � � γ + O ( η 2 ) , � X � N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 14 / 22

  51. Perturbation Bound for Sylvester equation The following perturbation bound holds: for A and B diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 . and sufficiently small η = max {� δ A � , � δ B � , � δ G � , � δ F �} , � � δ X � κ ( T ) � S �� S − 1 δ A � + κ ( S ) � T − 1 �� δ BT � ≤ � X � + � S �� T − 1 �� S − 1 ( G δ F ∗ + δ GF ∗ ) T � � γ + O ( η 2 ) , � X � n 0 | µ j − λ j | τ ( j ) max σ ( j ) � γ = max j =1 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 14 / 22

  52. Perturbation Bound for Sylvester equation The following perturbation bound holds: for A and B diagonalizable; A = S diag ( λ i ) S − 1 , B = T diag ( µ i ) T − 1 . and sufficiently small η = max {� δ A � , � δ B � , � δ G � , � δ F �} , � � δ X � κ ( T ) � S �� S − 1 δ A � + κ ( S ) � T − 1 �� δ BT � ≤ � X � + � S �� T − 1 �� S − 1 ( G δ F ∗ + δ GF ∗ ) T � � γ + O ( η 2 ) , � X � n 0 | µ j − λ j | τ ( j ) max σ ( j ) � γ = max where: j =1 | σ ( i , j − 1) | | τ ( i , j − 1) | σ ( j ) | λ i − µ j | , τ ( j ) max = � ∆ Φ ( j ) � = max max = � ∆ Ψ ( j ) � = max | µ i − λ j | . i i N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 14 / 22

  53. Illustration of new perturbation bound N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 15 / 22

  54. Illustration of new perturbation bound Consider perturbed Sylvester equation ( A + δ A )( X + δ X ) − ( X + δ X )( B + δ B ) = ( C + δ C ) , N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 15 / 22

  55. Illustration of new perturbation bound Consider perturbed Sylvester equation ( A + δ A )( X + δ X ) − ( X + δ X )( B + δ B ) = ( C + δ C ) , The standard bound (N. J. Higham, 1996): √ � δ X � F 3Ψ ǫ + O ( ǫ 2 ) , ≤ � X � F N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 15 / 22

  56. Illustration of new perturbation bound Consider perturbed Sylvester equation ( A + δ A )( X + δ X ) − ( X + δ X )( B + δ B ) = ( C + δ C ) , The standard bound (N. J. Higham, 1996): √ � δ X � F 3Ψ ǫ + O ( ǫ 2 ) , ≤ � X � F where Ψ = � P − 1 [ α ( X T ⊗ I m ) − β ( I n ⊗ X ) − δ I mn ] � / � X � F , P = I n ⊗ A − B T ⊗ I m N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 15 / 22

  57. Illustration of new perturbation bound Consider perturbed Sylvester equation ( A + δ A )( X + δ X ) − ( X + δ X )( B + δ B ) = ( C + δ C ) , The standard bound (N. J. Higham, 1996): √ � δ X � F 3Ψ ǫ + O ( ǫ 2 ) , ≤ � X � F where Ψ = � P − 1 [ α ( X T ⊗ I m ) − β ( I n ⊗ X ) − δ I mn ] � / � X � F , P = I n ⊗ A − B T ⊗ I m � � � δ A � F , � δ B � F , � δ C � F ǫ = max , α β δ N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 15 / 22

  58. Illustration of new perturbation bound Consider perturbed Sylvester equation ( A + δ A )( X + δ X ) − ( X + δ X )( B + δ B ) = ( C + δ C ) , The standard bound (N. J. Higham, 1996): √ � δ X � F 3Ψ ǫ + O ( ǫ 2 ) , ≤ � X � F where Ψ = � P − 1 [ α ( X T ⊗ I m ) − β ( I n ⊗ X ) − δ I mn ] � / � X � F , P = I n ⊗ A − B T ⊗ I m � � � δ A � F , � δ B � F , � δ C � F ǫ = max , α = � A � F , β = � B � F and δ = � C � F α β δ N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 15 / 22

  59. Illustration of new perturbation bound N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 16 / 22

  60. Illustration of new perturbation bound Let A = S Λ S − 1 with Λ = diag (30 , 40 , 60 , 70 , 90) N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 16 / 22

  61. Illustration of new perturbation bound Let A = S Λ S − 1 with Λ = diag (30 , 40 , 60 , 70 , 90)  0 . 052 0 . 494 0 . 935 0 . 592 0 . 827  0 . 264 0 . 094 0 . 220 0 . 388 0 . 387     S = 0 . 757 0 . 971 0 . 189 0 . 935 0 . 445 .     0 . 435 0 . 424 0 . 280 0 . 826 0 . 009   0 . 506 0 . 270 0 . 674 0 . 051 0 . 280 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 16 / 22

  62. Illustration of new perturbation bound Let A = S Λ S − 1 with Λ = diag (30 , 40 , 60 , 70 , 90)  0 . 052 0 . 494 0 . 935 0 . 592 0 . 827  0 . 264 0 . 094 0 . 220 0 . 388 0 . 387     S = 0 . 757 0 . 971 0 . 189 0 . 935 0 . 445 .     0 . 435 0 . 424 0 . 280 0 . 826 0 . 009   0 . 506 0 . 270 0 . 674 0 . 051 0 . 280 B = T Ω T − 1 with Ω = diag (100 , 200 , 300 , 400 , 450) N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 16 / 22

  63. Illustration of new perturbation bound Let A = S Λ S − 1 with Λ = diag (30 , 40 , 60 , 70 , 90)  0 . 052 0 . 494 0 . 935 0 . 592 0 . 827  0 . 264 0 . 094 0 . 220 0 . 388 0 . 387     S = 0 . 757 0 . 971 0 . 189 0 . 935 0 . 445 .     0 . 435 0 . 424 0 . 280 0 . 826 0 . 009   0 . 506 0 . 270 0 . 674 0 . 051 0 . 280 B = T Ω T − 1 with Ω = diag (100 , 200 , 300 , 400 , 450)  85610 89420 42300 31670 97380  9709 64180 89230 36420 28030     T = 0 . 3910 0 . 2030 0 . 9910 0 . 6150 0 . 1740 .     0 . 3760 0 . 0680 0 . 4000 0 . 5970 0 . 9210   0 . 5150 0 . 8000 0 . 3400 0 . 6850 0 . 2600 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 16 / 22

  64. Illustration of new perturbation bound N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 17 / 22

  65. Illustration of new perturbation bound Further, � − 10 � T − 60 0 0 0 0 G = , F = G . − 60 400 0 0 0 0 N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 17 / 22

  66. Illustration of new perturbation bound Further, � − 10 � T − 60 0 0 0 0 G = , F = G . − 60 400 0 0 0 0 Perturbations are δ B = 10 − 9 · diag 10 − 5 , 10 − 5 , 1 , 1 , 1 � � , δ A = 0 , δ F = δ G = 0 . N. Truhar (Osijek, 2009) Sylvester equation 24.04.2009 17 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend