quarkonium production from jlab to an eic
play

Quarkonium Production: From JLab to an EIC Sylvester Joosten - PowerPoint PPT Presentation

This work is supported by DOE grant DE-FG02-94ER4084 Quarkonium Production: From JLab to an EIC Sylvester Joosten sylvester.joosten@temple.edu QCD Evolution 2018 (Santa Fe, NM) Quarkonium in electro- and photo-production l - Strong gluonic


  1. This work is supported by DOE grant DE-FG02-94ER4084 Quarkonium Production: From JLab to an EIC Sylvester Joosten sylvester.joosten@temple.edu QCD Evolution 2018 (Santa Fe, NM)

  2. Quarkonium in electro- and photo-production l - Strong gluonic interaction between color neutral γ,γ* t J/ψ,Υ objects Minimal quark exchange l + Quarkonium as a probe to p p’ study the gluonic structure of the nucleon S. Joosten 2

  3. Quarkonium photo-production: what do we know? 3 J/ ψ photo-production: 10 J/ ψ 2 10 Direct photo-production 
 10 Cornell ’75, 
 (nb) Cornell '75 SLAC ’75, 
 SLAC '75 1 ψ CERN NA-14 J/ σ CERN NA-14, 
 FNAL E401 − 1 10 FNAL E401, E687 FNAL E687 H1 Combined ( *) γ 2 − 10 ZEUS Combined ( *) γ Electro-production (quasi-real) 
 LHCB '14 (UPC) H1 and ZEUS 3 − 10 2 3 10 10 10 W (GeV) Ultra-peripheral pp collisions 
 3 10 Y(1s) LHCb ’14 2 10 Y(1s) photo-production: 10 (nb) Electro-production (quasi-real) 
 1 Υ σ H1 and ZEUS 1 − 10 Ultra-peripheral pp collisions 
 H1 2000 ( *) γ − 2 10 ZEUS 2009 ( *) γ LHCb ’15 LHCb '15 (UPC) 3 − 10 3 2 10 10 10 W (GeV) S. Joosten 3

  4. Quarkonium photo-production: what do we know? 3 J/ ψ photo-production: 10 J/ ψ 2 10 Well constrained above W > 15 GeV 10 Dominated by t- channel 2-gluon (nb) Cornell '75 exchange SLAC '75 1 ψ CERN NA-14 J/ Almost no data near threshold σ FNAL E401 − 1 10 FNAL E687 H1 Combined ( *) γ l - 2 − 10 ZEUS Combined ( *) γ LHCB '14 (UPC) q γ,γ* 3 − J/ψ,Υ 10 2 3 10 10 10 _ W (GeV) q 3 10 Y(1s) l + 2 10 p p’ 10 (nb) 1 Υ σ Y(1s) photo-production: 1 − 10 H1 2000 ( *) γ Not much available − 2 10 ZEUS 2009 ( *) γ LHCb '15 (UPC) ZEUS measured 62 ± 12 events total! 3 − 10 3 2 10 10 10 W (GeV) S. Joosten 4

  5. Why the threshold region? 3 10 Near Threshold: J/ ψ 2 10 Origin of proton mass , trace 10 anomaly of the QCD energy- (nb) Cornell '75 SLAC '75 momentum tensor. 1 ψ CERN NA-14 J/ σ FNAL E401 Gluonic Van der Waals force , − 1 10 FNAL E687 H1 Combined ( *) γ possible quarkonium-nucleon/ 2 − 10 ZEUS Combined ( *) γ LHCB '14 (UPC) nucleus bound states 3 − 10 2 3 10 10 10 Mechanism for quarkonium W (GeV) 3 10 production Y(1s) 2 10 10 (nb) 1 Υ σ 1 − 10 H1 2000 ( *) γ − 2 10 ZEUS 2009 ( *) γ LHCb '15 (UPC) 3 − 10 3 2 10 10 10 W (GeV) S. Joosten 5

  6. Why the threshold region? 3 10 Near Threshold: J/ ψ 2 10 Origin of proton mass , trace 10 anomaly of the QCD energy- (nb) Cornell '75 SLAC '75 momentum tensor. 1 ψ CERN NA-14 J/ σ FNAL E401 Gluonic Van der Waals force , − 1 10 FNAL E687 H1 Combined ( *) γ possible quarkonium-nucleon/ 2 − 10 ZEUS Combined ( *) γ LHCB '14 (UPC) nucleus bound states 3 − 10 2 3 10 10 10 Mechanism for quarkonium W (GeV) 3 10 production Y(1s) 2 10 10 (nb) 1 J/ ψ program at Jefferson Lab Υ σ 1 − 10 Y(1s) production at an EIC H1 2000 ( *) γ − 2 10 ZEUS 2009 ( *) γ LHCb '15 (UPC) 3 − 10 3 2 10 10 10 W (GeV) S. Joosten 5

  7. Why electro-production at high energies? 3 10 High Energies J/ ψ 2 10 Access Gluon GPD: Full 3D 10 tomography of the gluonic (nb) Cornell '75 SLAC '75 structure of the nucleon 1 ψ CERN NA-14 J/ σ FNAL E401 L-T separation and the Q 2 − 1 10 FNAL E687 H1 Combined ( *) γ dependence of R for 2 − 10 ZEUS Combined ( *) γ LHCB '14 (UPC) quarkonium production 3 − 10 2 3 10 10 10 W (GeV) 3 10 Y(1s) 2 10 10 (nb) 1 Υ σ 1 − 10 H1 2000 ( *) γ − 2 10 ZEUS 2009 ( *) γ LHCb '15 (UPC) 3 − 10 3 2 10 10 10 W (GeV) S. Joosten 6

  8. Why electro-production at high energies? 3 10 High Energies J/ ψ 2 10 Access Gluon GPD: Full 3D 10 tomography of the gluonic (nb) Cornell '75 SLAC '75 structure of the nucleon 1 ψ CERN NA-14 J/ σ FNAL E401 L-T separation and the Q 2 − 1 10 FNAL E687 H1 Combined ( *) γ dependence of R for 2 − 10 ZEUS Combined ( *) γ LHCB '14 (UPC) quarkonium production 3 − 10 2 3 10 10 10 W (GeV) 3 10 Y(1s) 2 10 10 J/ ψ production at an EIC (nb) 1 Y(1s) production at an EIC Υ σ 1 − 10 H1 2000 ( *) γ − 2 10 ZEUS 2009 ( *) γ LHCb '15 (UPC) 3 − 10 3 2 10 10 10 W (GeV) S. Joosten 6

  9. Quarkonium production near threshold

  10. Production mechanism near threshold unknown 2-gluon S.J. Brodsky, et al., Phys.Lett. B498, 23-28 (2001) Same as high energies ( 2-gluon )? S. Joosten 8

  11. Production mechanism near threshold unknown 2-gluon 3-gluon S.J. Brodsky, et al., Phys.Lett. B498, 23-28 (2001) Same as high energies ( 2-gluon )? Maybe 3-gluon exchange dominant? S. Joosten 8

  12. Production mechanism near threshold unknown 2-gluon 3-gluon partonic soft S.J. Brodsky, et al., Phys.Lett. B498, 23-28 (2001) Frankfurt and Strikman., PRD66 (2002), 031502 Or a partonic soft mechanism Same as high energies ( 2-gluon )? (power law 2-gluon form-factor)? Maybe 3-gluon exchange dominant? S. Joosten 8

  13. Production mechanism near threshold unknown 2-gluon 3-gluon partonic soft S.J. Brodsky, et al., Phys.Lett. B498, 23-28 (2001) Frankfurt and Strikman., PRD66 (2002), 031502 Or a partonic soft mechanism Same as high energies ( 2-gluon )? (power law 2-gluon form-factor)? Maybe 3-gluon exchange dominant? Orders of magnitude difference 2-gluon fastest drop-off Drives required luminosity for threshold measurement S. Joosten 8

  14. 2-gluon fit near threshold Smallest cross section drives required precision and luminosity Use 2-gluon estimate for experimental projections near threshold 2 10 J/ ψ Y(1s) 3 Cornell '75 H1 2000 ( *) γ 10 SLAC '75 ZEUS 2009 ( *) 10 γ 2 10 SLAC '76 (Unpublished) 2-gluon fit 2-gluon fit 1 10 (nb) (nb) 1 1 − 10 ψ Υ J/ σ σ 1 − 10 2 − 10 2 − 10 3 − 10 3 − 10 4 4 − − 10 10 10 15 20 25 2 10 10 E (GeV) W (GeV) γ S. Joosten 9

  15. Quarkonium-nucleon scattering amplitude γ,γ* J/ψ,Υ J/ψ,Υ J/ψ,Υ VMD p p’ p p’ VMD relates photo-production cross section to quarkonium-nucleon scattering amplitude T ψ p . S. Joosten 10

  16. Quarkonium-nucleon scattering amplitude γ,γ* J/ψ,Υ J/ψ,Υ J/ψ,Υ VMD p p’ p p’ VMD relates photo-production cross section to quarkonium-nucleon scattering amplitude T ψ p . Real part T ψ p dominates near threshold Mostly constrained through dispersive relations, not data. D. Kharzeev, Proc.Int.Sch.Phys.Fermi 130 (1996) 105-131 D. Kharzeev et al. , EPJ-C9 (1999) 459-462 S. Joosten 10

  17. The proton mass is an emergent phenomenon M. S. Bhagwat et al ., Phys. Rev. C 68, 015203 (2003) I. C. Cloet et al ., Prog. Part. Nucl. Phys. 77, 1-69 (2014) Constituent quark mass from DSE and Lattice Low momentum gluons attach to the current quark (DCSB) Gluon field accumulates ~300MeV/constituent quark Even in the chiral limit (mass from nothing)! S. Joosten 11

  18. The proton mass is an emergent phenomenon M. S. Bhagwat et al ., Phys. Rev. C 68, 015203 (2003) I. C. Cloet et al ., Prog. Part. Nucl. Phys. 77, 1-69 (2014) Constituent quark mass from DSE and Lattice Low momentum gluons attach to the current quark (DCSB) Gluon field accumulates ~300MeV/constituent quark Even in the chiral limit (mass from nothing)! The Higgs mechanism is largely irrelevant in “normal” matter! S. Joosten 11

  19. The proton mass : covariant decomposition D. Kharzeev, Proc.Int.Sch.Phys.Fermi 130 (1996) 105-131 Access nucleon mass through trace of energy- momentum tensor (EMT) at zero momentum transfer µ | P i = 2 P µ P µ = 2 M 2 h P | T µ p S. Joosten 12

  20. The proton mass : covariant decomposition D. Kharzeev, Proc.Int.Sch.Phys.Fermi 130 (1996) 105-131 Access nucleon mass through trace of energy- momentum tensor (EMT) at zero momentum transfer µ | P i = 2 P µ P µ = 2 M 2 h P | T µ p At low momentum transfer: heavy quarks decouple ˜ β ( g ) 2 g G 2 + m q (1 + γ m ) ¯ X T µ µ = ψ q ψ q q = u,d,s Trace Anomaly Light Quark Mass S. Joosten 12

  21. The proton mass : covariant decomposition D. Kharzeev, Proc.Int.Sch.Phys.Fermi 130 (1996) 105-131 Access nucleon mass through trace of energy- momentum tensor (EMT) at zero momentum transfer µ | P i = 2 P µ P µ = 2 M 2 h P | T µ p At low momentum transfer: heavy quarks decouple ˜ β ( g ) 2 g G 2 + m q (1 + γ m ) ¯ X T µ µ = ψ q ψ q q = u,d,s Trace Anomaly Light Quark Mass Trace anomaly term dominant: 
 “ Proton mass result of the vacuum polarization induced by the presence of the proton.” S. Joosten 12

  22. The proton mass : covariant decomposition D. Kharzeev, Proc.Int.Sch.Phys.Fermi 130 (1996) 105-131 Access nucleon mass through trace of energy- momentum tensor (EMT) at zero momentum transfer µ | P i = 2 P µ P µ = 2 M 2 h P | T µ p At low momentum transfer: heavy quarks decouple ˜ β ( g ) 2 g G 2 + m q (1 + γ m ) ¯ X T µ µ = ψ q ψ q q = u,d,s Trace Anomaly Light Quark Mass Experimental access: M. Luke et al. , PLB 288 (1992) 355-359 Trace of EMT proportional to quarkonium-proton scattering amplitude T ψ p Lattice QCD: Possible to evaluate < G 2 > directly S. Joosten 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend