qqq charmonium threshold states and qqq q potentials
play

qqQ charmonium threshold states and QQq Q potentials Gunnar Bali - PowerPoint PPT Presentation

qqQ charmonium threshold states and QQq Q potentials Gunnar Bali Universitt Regensburg QWG7 Fermilab, 18 May 2010 Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II Lattice QCD Threshold charmonia Outlook I


  1. qqQ charmonium threshold states and QQq Q ¯ potentials Gunnar Bali Universität Regensburg QWG7 Fermilab, 18 May 2010

  2. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II Lattice QCD Threshold charmonia Outlook I QQq baryonic potentials Outlook II Charmonium results from GB & Christian Ehmann, arXiv:0710.0256, arXiv:0903.2947, arXiv:0911.1238, in prep. QQq potentials from GB & Johannes Najjar, arXiv:0910.2824, in prep. Q ¯ qqQ potentials (not discussed): GB & Martin Hetzenegger, in prep. Gunnar Bali (Regensburg) qqQ and QQq 2 / 24 Q ¯

  3. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II 1 Input: L QCD = − 16 πα L FF + ¯ q f ( D / + m f ) q f = m phys m latt − → a N N / m phys m latt π / m latt = m phys − → m u ≈ m d N N π · · · Output: hadron masses, matrix elements, decay constants, etc... Extrapolations: 1 a → 0: functional form known. 2 L → ∞ : harmless but often computationally expensive. → m phys 3 m latt : chiral perturbation theory ( χ PT) but m latt must be q q q sufficiently small to start with. ( m latt PS = m phys has only very recently been realized.) π Gunnar Bali (Regensburg) qqQ and QQq 3 / 24 Q ¯

  4. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II 1974 – 1977: 10 c ¯ c resonances, 1978 – 2001: 0 c ¯ c ’s 2002 – 2008: ≤ 12 new c ¯ c ’s found by BaBar, Belle, CLEO-c, CDF, D0 new detectors 4.6 Y(4660) standard ψ (4415) ????? - 4.4 higher luminosity Z + (4430) DD ** Y(4350) - - 4.2 Y(4260) new channels: * D s * D s * D s D s X(4160) ψ (4160) - - 4.0 B decays ψ (4040) Z(3934) D s D s D * D * Y(3940) - X(3943) m/GeV 3.8 DD * X(3871/3875) γγ - ψ (3770) DD ψψ -production 3.6 ψ (2S) η c (2S) h c χ c gg in p ¯ p collisions. 3.4 3.2 c ¯ qq ¯ c in c ¯ c ? J/ ψ 3.0 η c cg ¯ c hybrids ? L = 0 L = 1 L = 2 Gunnar Bali (Regensburg) qqQ and QQq 4 / 24 Q ¯

  5. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II Hybrid mesons m c ≫ Λ QCD − → Adiabatic and non-relativistic approximations: H = 2 m c + p 2 H ψ nlm = E nl ψ nlm , m c + V ( r ) 1.5 1 0.5 hybrid potential: V(r)/GeV 0 Lattice: -0.5 - Σ u Π u -1 + Σ g -1.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 r/fm Gunnar Bali (Regensburg) qqQ and QQq 5 / 24 Q ¯

  6. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II C Ehmann, GB 07 ( n f = 2, a − 1 ≈ 1 . 73 GeV from m N ) 1 S 0 3 S 1 1 P 1 3 P 0 3 P 1 3 P 2 1 D 2 3 D 2 3 D 3 1 F 3 3 F 3 5.5 5.0 Y(4660) 4.5 ψ (4415) Y(4350) m/GeV Y(4260) ψ (4160) X(4160) 4.0 ψ (4040) Y(3940) X(3943) Z(3934) ψ (3770) X(3872) ψ ’ χ c 2 η c ’ h c χ c 1 3.5 χ c 0 lattice exotic DD ** J/ ψ 3.0 DD η c experiment 0 -+ 1 -- 1 +- 0 ++ 1 ++ 2 ++ 2 -+ 2 -- 3 -- 3 +- 3 ++ 1 -+ 2 +- Gunnar Bali (Regensburg) qqQ and QQq 6 / 24 Q ¯

  7. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II Two state potentials GB, H Neff, T Düssel, T Lippert, Z Prkacin, K Schilling 04/05 0.6 0.4 [E(r) - 2 m B ]/GeV 0.2 2m B s 0 2m B -0.2 state |1> -0.4 state |2> n f = 2 + 1 -0.6 0.8 1.0 1.2 1.4 1.6 r/fm Gunnar Bali (Regensburg) qqQ and QQq 7 / 24 Q ¯

  8. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II Two state system: Eigenstates: | 1 � cos θ | QQ � + sin θ | BB � = | 2 � − sin θ | QQ � + cos θ | BB � = with B = Qq .   √ n f           Correlation matrix:     √ n f    − n f      Gunnar Bali (Regensburg) qqQ and QQq 8 / 24 Q ¯

  9. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II Mixing angle: BB content of the ground state 0.5 0.375 θ/π 0.25 a ≈ 0 . 083 fm 0.125 0 2 4 6 8 10 12 14 16 18 r/a Gunnar Bali (Regensburg) qqQ and QQq 9 / 24 Q ¯

  10. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II Coupled channel potential model for threshold effects ? ∗ , · · · ) ⇒ many parameters! Many channels ( DD , D ∗ D , D s D s , D ∗ D However, very good to address qualitative questions: For what I , S and radial excitation do we get attraction/repulsion ? Are Z + s possible and/or likely ? “Direct” calculation of the spectrum ? We have to be able to resolve radial excitations! (remember e.g. the very dense 1 −− sector.) Required: large basis of test wavefunctions including c ¯ c , c ¯ qq ¯ c and cg ¯ c operators and good statistics. Gunnar Bali (Regensburg) qqQ and QQq 10 / 24 Q ¯

  11. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II c ¯ c ↔ DD mixing (for n f = 2) GB, C Ehmann 09/10 : 2 2 _ 2 2 _ 4 + 4 ( c ¯ c annihilation diagrams negelected.) Gunnar Bali (Regensburg) qqQ and QQq 11 / 24 Q ¯

  12. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II n f = 2, a − 1 ≈ 2 . 59 GeV, La ≈ 1 . 83 fm, m PS ≈ 290 MeV χ c1 ’ 5000 * D 1 D D 1 D 4500 ψ ’ M[MeV] * D D η c ’ 4000 χ c1 3500 J/ ψ η c 3000 -+ 1 -- 1 ++ 0 Gunnar Bali (Regensburg) qqQ and QQq 12 / 24 Q ¯

  13. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II Eigenvector components of the J /ψ . Components of the D 1 D . 1 1 0,8 0,75 0,6 0,5 0,4 0,25 0,2 φ i (D 1 D ) φ i (J/ ψ) 0 0 -0,2 -0,25 (cc) l (cc) l -0,4 -0,5 (cc) n (cc) n (cu cu) l -0,6 (cu cu) l (cu cu) n -0,75 (cu cu) n -0,8 -1 -1 2 4 6 8 10 12 2 4 6 8 10 12 Gunnar Bali (Regensburg) qqQ and QQq 13 / 24 Q ¯

  14. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II Components of the D ∗ D . Eigenvector components of the χ c 1 . 1 1 0,8 0,8 0,6 0,6 0,4 0,4 (cc) l 0,2 (cc) n 0,2 φ i ( χ c1 ) (cq cq) l * ) φ i (D 0 D 0 0 (cq cq) n -0,2 -0,2 (cc) l -0,4 -0,4 (cc) n -0,6 -0,6 (cq cq) l (cq cq) n -0,8 -0,8 -1 -1 2 4 6 8 10 12 2 4 6 8 10 12 Gunnar Bali (Regensburg) qqQ and QQq 14 / 24 Q ¯

  15. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II Outlook I ∃ first simulations near the physical m π at a − 1 ≈ 2 GeV. ∃ first precision calculations of annihilation and mixing diagrams. Study of c ¯ c ↔ c ¯ qq ¯ c is well on its way. The continuum limit is important, in particular for the fine structure. There will be a lot of progress in charmonium spectroscopy below and above decay thresholds in the next years. Forces between pairs of static-light mesons for different S and I are being studied, to qualitatively understand 4-quark binding ( X ( 3872 ) , Z + ( 4430 ) etc.). Gunnar Bali (Regensburg) qqQ and QQq 15 / 24 Q ¯

  16. Outline Lattice QCD Threshold charmonia Outlook I QQq potentials Outlook II QQq : factorization Distance r between Q and Q in static-static-light baryon ( QQq ). In the limit r → 0 this becomes a Qq static-light meson. For small r , the factorization     �  − 1  exp  −  ∝ exp  −      2     t should hold: V QQq ( r ) ≃ m Qq + 1 ( r ≪ Λ − 1 ) 2 V QQ ( r ) (NB: the 1 / m corrections to the static limit are different, even at r = 0.) Minimal string picture with QQ tension = 1 2 QQ string tension: ( r ≫ Λ − 1 ) V QQq ( r ) ≃ const + V QQ ( r ) Gunnar Bali (Regensburg) qqQ and QQq 16 / 24 Q ¯

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend