muon acceleration in ffag rings
play

Muon Acceleration in FFAG Rings Eberhard Keil CASA Seminar at JLab - PowerPoint PPT Presentation

CASA Seminar at JLab April 29, 2004 Muon Acceleration in FFAG Rings Eberhard Keil CASA Seminar at JLab 26 April 2004 My WWW home directory: http://keil.home.cern.ch/keil/ MuMu/Doc/JLab Apr04/talk.pdf E. Keil page 1 CASA Seminar at JLab


  1. CASA Seminar at JLab April 29, 2004 Muon Acceleration in FFAG Rings Eberhard Keil CASA Seminar at JLab 26 April 2004 My WWW home directory: http://keil.home.cern.ch/keil/ MuMu/Doc/JLab Apr04/talk.pdf E. Keil page 1

  2. CASA Seminar at JLab April 29, 2004 Motivation • Neutrino factory studies in US and Europe assumed muon acceleration in recirculating linear accelerators ”similar” to CEBAF with – only 4 or 5 passes – 7 or 9 arcs – 4 spreaders and combiners – no kickers for injection and ejection – 37.5% and 20% of total cost of neutrino factory in studies I and II • FFAG rings promise – more passes – fewer arcs – no spreaders and combiners – fun with kickers for injection and ejection E. Keil page 2

  3. CASA Seminar at JLab April 29, 2004 Styles of FFAG Accelerators • Scaling FFAG rings – have similar orbits at different momenta – have tunes independent of momentum – have nonlinear fields – radial or spiral sectors – are part of the Japanese neutrino factory design • Non-scaling FFAG rings – are essentially alternating-gradient lattices with small dispersion and controlled values of slip factors η 0 and η 1 – have tunes that vary with momentum – have linear fields – are considered for US neutrino factory design E. Keil page 3

  4. CASA Seminar at JLab April 29, 2004 Actors and References • C.J. Johnstone and S. Koscielniak , Recent Progress on FFAGs for Rapid Acceleration, APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001) T508. • D. Trbojevic et al., Fixed Field Alternating Gradient Lattice Design without Opposite Bend, EPAC 2002, Paris, France, 1199. • C.J. Johnstone and S. Koscielniak, Recent Progress on FFAGs for Rapid Acceleration, EPAC 2002, Paris, France, 1261. • C. Johnstone and S. Koscielniak, FFAGS for Rapid Acceleration, accepted for publication in NIM-A Nov 2002. • E. Keil and A.M. Sessler , Muon Acceleration in FFAG Rings, PAC 2003, 414. • D. Trbojevic et al., FFAG Lattice for Muon Acceleration with Distributed RF, PAC 2003, 1816. • J.S. Berg and C. Johnstone, Design of FFAGs Based on a FODO Lattice, PAC 2003, 2216. • J.S. Berg et al., FFAGs for Muon Acceleration, PAC 2003, 3413. E. Keil page 4

  5. CASA Seminar at JLab April 29, 2004 Longitudinal Dynamics • Longitudinal Hamiltonian for stationary buckets � � 2 πhβ 2 η 0 p 2 + η 1 p 3 0 E 0 + sin 2 πϕ t t H 1 ( p t , ϕ ) = + . . . eV N c 2 3 – p t momentum error relative to reference particle with total energy E 0 and speed β 0 c – ϕ phase measured in cycles with origin at stable fixed point and − 1 / 2 ≤ ϕ ≤ +1 / 2 – h harmonic number, V peak accelerating voltage, N c number of RF cavities • Consider 3 cases: – Linear motion with η 0 � = 0 and η 1 = η 2 = 0 – Nonlinear motion with η 0 � = 0 , η 1 � = 0 and η 2 = 0 – Motion near transition with η 0 = 0 , and η 1 � = 0 E. Keil page 5

  6. CASA Seminar at JLab April 29, 2004 Linear Longitudinal Motion 1 • Measure momentum offset y in units of 0.5 half linear bucket height • For stationary buckets in FFAG rings 0 – Stable fixed point at ϕ = y = 0 – Unstable fixed points at ϕ = ± 1 / 2 and y = 0 -0.5 – Hamiltonian -1 H ( ϕ, y, a ) = y 2 + sin 2 πϕ -0.4 -0.2 0 0.2 0.4 Contour plot of Hamiltonian for linear motion. Muons move along level lines. E. Keil page 6

  7. CASA Seminar at JLab April 29, 2004 Effect of η 1 � = 0 on Longitudinal Hamiltonian • a = η 1 p b /η 0 with half bucket height p b 1 • New stable fixed points at ϕ = ± 1 / 2 and y = − 1 /a 0.5 • New unstable fixed point at ϕ = 0 and y = 0 − 1 /a -0.5 • Ω -shaped trajectories start below fixed point at ϕ = ± 1 / 2 and y = − 1 /a , cir- -1 cle around fixed point at ϕ = 0 and y = 0 , and reach maximum y above it -1.5 • Acceleration in FFAG rings along light -2 -0.4 -0.2 0 0.2 0.4 blue Ω -shaped trajectories Contour plot of Hamiltonian at a = 1 . • Find limit on a for Ω -shaped trajectories E. Keil page 7

  8. CASA Seminar at JLab April 29, 2004 Separatrices • Separatrices pass unstable fixed points 0.5 • 2 unstable fixed points and 2 separatrices when a � = 0 0.1 0.2 0.3 0.4 0.5 -0.5 • Find separatrices by solving for y : -1 -1.5 H ( ϕ, y, a ) = H ( − 1 / 2 , 0 , a ) a = 1 H ( ϕ, y, a ) = H (0 , − 1 /a, a ) 1 • Use symmetry and plot for 0 ≤ ϕ ≤ 1 / 2 0.1 0.2 0.3 0.4 0.5 -1 • Acceleration along trajectories in S-shaped channel be- -2 tween islands starts between separatrices in lower right -3 corner below y = − 3 / 2 a , and ends between separatri- a = 1 / 2 ces in upper left corner above y = 1 / 2 a 0.5 • At a = 1 / 2 regular bucket centred at ϕ = y = 0 blocks 0.1 0.2 0.3 0.4 0.5 -0.5 acceleration across y = 0 -1 √ -1.5 • At a = 1 / 3 buckets centred at ϕ = y = 0 and at -2 √ -2.5 ϕ = 1 / 2 and y = − 3 just touch, and channel of ac- √ celeration has width zero, agreeing with K.Y.Ng’s result a = 1 / 3 E. Keil page 8

  9. CASA Seminar at JLab April 29, 2004 Longitudinal Motion Near Transition • Introduce scaled momentum variable y � 1 / 3 � 2 πβ 2 0 E 0 hη 1 y = p t 1 3 eV N c • Scaled Hamiltonian H 5 ( y, ϕ ) 0.5 H 5 ( y, ϕ ) = y 3 + sin 2 πϕ 0 • Acceleration in FFAG rings happens along light blue S -shaped trajectory, which starts at ϕ = 1 / 2 and y = − 1 , -0.5 and reaches maximum y = 1 at ϕ = 0 • Equation relates range ± p t and ring -1 parameters at y = ± 1 , cf. next page 0 0.1 0.2 0.3 0.4 0.5 • Discuss later two FFAG rings operat- Contour plot of H 5 ( y, ϕ ) ing near transition, doublet lattice for muons, and model for electrons E. Keil page 9

  10. CASA Seminar at JLab April 29, 2004 Parameters and Scaling Laws • Calculate RF cavity voltage V from accelerating range p t and ring parameters: V = 2 πβ 2 0 E 0 � hη 1 � p 3 t 3 e N c • Scaling with energy E 0 in first term, with range p t in third term • Scaling with N lattice periods of length L in brackets: – h and circumference C at given RF frequency ∝ LN – N c ∝ N – η 1 ∝ 1 /N 2 derived analytically by K.Y. Ng for FODO lattice with N ≫ 1 ; I believe from numerical studies that it holds for any lattice style t /N 2 and N c V ∝ E 0 Lp 3 • V ∝ E 0 Lp 3 t /N • Assuming that cost of magnets, vacuum, tunnel is C M LN , that cost of RF cavities and power installation is C RF E 0 Lp 3 t /N yields cost optimum at eqal cost components � C M C RF E 0 p 3 C = 2 L t E. Keil page 10

  11. CASA Seminar at JLab April 29, 2004 Johnstone-Koscielniak FODO Lattice JK • Focusing quadrupoles • Defocusing gradient dipoles Johnstone-Koscielniak FFAG lattice cell 6 to 20 GeV - apr07r Win32 version 8.51/15 27/03/04 15.45.43 3.8 0.30 • FODO lattice with Q x ≈ Q y β x β y 1/ 2 ) x (m) 1 / 2 1 / 2 D x 0.29 1/ 2 (m 3.6 D 0.28 • Number of cells N = 314 0.27 β 3.4 • Circumference C = 2041 m 0.26 3.2 0.25 • Space for two super- 0.24 3.0 0.23 conducting RF cavities 0.22 2.8 in cell 0.21 2.6 0.20 0.0 1. 2. 3. 4. 5. 6. 7. 8. • Accelerating voltage V = s (m) 2 . 5 MV E. Keil page 11

  12. CASA Seminar at JLab April 29, 2004 Trbojevic Triplet Lattice T • Focusing gradient dipoles FFAG 15 Gev Lattice Dejan Trbojevic, APR 1, 2003 - mar28n • Defocusing gradient dipoles Win32 version 8.51/15 29/03/04 16.19.07 3.500 0.18 1/ 2 ) x (m) β x β y 1 / 2 1 / 2 D x 0.17 1/ 2 (m 3.275 • Triplet lattice with Q x � = Q y D 0.16 3.050 β 0.15 • Number of cells N = 60 2.825 0.14 0.13 2.600 • Circumference C = 318 m 0.12 2.375 0.11 2.150 0.10 • Space for super-conducting 0.09 1.925 RF cavity 0.08 1.700 0.07 1.475 • Accelerating voltage V = 0.06 1.250 0.05 10 MV 0.0 1.0 2.0 3.0 4.0 5.0 6.0 s (m) E. Keil page 12

  13. CASA Seminar at JLab April 29, 2004 Keil-Sessler FODO Lattice KS-F • Focusing quadrupoles • Defocusing gradient dipoles FFAG cell 6-20 GeV - Lp=3.7m - apr28p • FODO lattice with Q x ≈ Q y Win32 version 8.51/15 29/04/04 00.40.11 2.90 0.22 β y β x 1/ 2 ) x (m) 1 / 2 1 / 2 D x 2.81 • FODO lattice with Q x ≈ Q y 1/ 2 (m 0.21 D 2.72 0.20 2.63 • Number of cells N = 2800 β 2.54 0.19 • Circumference C = 1036 m 2.45 0.18 2.36 • Space for two room- 2.27 0.17 2.18 temperature RF cavities 0.16 2.09 in cell 2.00 0.15 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 s (m) • Accelerating voltage V = δ 3 MV E. Keil page 13

  14. CASA Seminar at JLab April 29, 2004 Keil-Sessler Doublet Lattice KS-D • Focusing gradient dipoles Doublet cell 10-20 GeV - Lp=4 m - mar22r • Defocusing gradient dipoles Win32 version 8.51/15 24/03/04 20.04.59 2.60 0.14 β y β x 1/ 2 ) x (m) 1 / 2 1 / 2 D x • FODO lattice with Q x ≈ Q y 2.47 0.13 1/ 2 (m D 2.34 0.12 • Number of cells N = 100 2.21 0.11 β 2.08 0.10 • Circumference C = 400 m 1.95 0.09 1.82 0.08 • Space for super-conducting 1.69 0.07 1.56 0.06 RF cavity 1.43 0.05 • Accelerating voltage V = 1.30 0.04 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 13 . 5 MV s (m) E. Keil page 14

  15. CASA Seminar at JLab April 29, 2004 Tunes q x and q y vs. δp/p Trbojevic triplet lattice Johnstone-Koscielniak lattice 0.4 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 deltap deltap Keil-Sessler FODO lattice Keil-Sessler doublet lattice 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 deltap deltap E. Keil page 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend