on some sets with minimal l 2 discrepancy
play

On some sets with minimal L 2 discrepancy Dmitriy Bilyk University - PowerPoint PPT Presentation

On some sets with minimal L 2 discrepancy Dmitriy Bilyk University of South Carolina, Columbia, SC MCQMC 2010 Warszawa, Polska August 20, 2010 Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis Discrepancy function Consider P N [0


  1. On some sets with minimal L 2 discrepancy Dmitriy Bilyk University of South Carolina, Columbia, SC MCQMC 2010 Warszawa, Polska August 20, 2010 Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  2. Discrepancy function Consider P N ⊂ [0 , 1] d with # P N = N : D N ( x ) = ♯ {P N ∩ [0 , x ) } − Nx 1 x 2 . . . x d Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  3. L ∞ estimates (star-discrepancy) Theorem (Schmidt, 1972) For d = 2 we have � D N � ∞ � log N Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  4. L ∞ estimates (star-discrepancy) Theorem (Schmidt, 1972) For d = 2 we have � D N � ∞ � log N d = 2, Lerch (1904); van der Corput: There exist P N ⊂ [0 , 1] 2 with � D N � ∞ ≈ log N Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  5. L ∞ estimates (star-discrepancy) Theorem (Schmidt, 1972) For d = 2 we have � D N � ∞ � log N d = 2, Lerch (1904); van der Corput: There exist P N ⊂ [0 , 1] 2 with � D N � ∞ ≈ log N d ≥ 3, Halton (1960); Hammersely; Niederreiter; Faure There exist P N ⊂ [0 , 1] d with � D N � ∞ � (log N ) d − 1 Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  6. L ∞ estimates (star-discrepancy) Theorem (Schmidt, 1972) For d = 2 we have � D N � ∞ � log N d = 2, Lerch (1904); van der Corput: There exist P N ⊂ [0 , 1] 2 with � D N � ∞ ≈ log N d ≥ 3, Halton (1960); Hammersely; Niederreiter; Faure There exist P N ⊂ [0 , 1] d with � D N � ∞ � (log N ) d − 1 Theorem (DB, Lacey, Vagharshakyan, 2007) For d ≥ 3 there exists 0 < ε d ≤ 1 2 , such that d − 1 2 + ε d � D N � ∞ � (log N ) Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  7. L p estimates, 1 < p < ∞ Theorem d − 1 � D N � p � (log N ) 2 Roth (p = 2 ) 1954, Schmidt (p � = 2 ) 1977 Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  8. L p estimates, 1 < p < ∞ Theorem d − 1 � D N � p � (log N ) 2 Roth (p = 2 ) 1954, Schmidt (p � = 2 ) 1977 Theorem There exist P N ⊂ [0 , 1] d with d − 1 � D N � p ≈ (log N ) 2 (Davenport; Roth; Halton, Zaremba; Chen, Skriganov) Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  9. Van der Corput set “Digit reversing” van der Corput set Denote the binary expansion of x ∈ [0 , 1) by � x i · 2 − i = 0 . x 1 x 2 ... x n ... x = i The van der Corput set V n with 2 n points is defined as: V n = { ( 0 . x 1 x 2 . . . x n − 1 x n , 0 . x n x n − 1 . . . x 2 x 1 ) : x i = 0 , 1 } Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  10. van der Corput set van der Corput set with N = 2 3 points Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  11. van der Corput set van der Corput set with N = 2 4 points Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  12. van der Corput set van der Corput set with N = 2 5 points Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  13. van der Corput set van der Corput set with N = 2 6 points Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  14. van der Corput set van der Corput set with N = 2 7 points Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  15. van der Corput set van der Corput set with N = 2 8 points Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  16. van der Corput set van der Corput set with N = 2 9 points Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  17. van der Corput set van der Corput set with N = 2 10 points Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  18. van der Corput set van der Corput set with N = 2 11 points Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  19. van der Corput set van der Corput set with N = 2 12 points Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  20. Van der Corput set “Digit reversing” van der Corput set Denote the binary expansion of x ∈ [0 , 1) by � x i · 2 − i = 0 . x 1 x 2 ... x n ... x = i The van der Corput set V n with 2 n points is defined as: V n = { ( 0 . x 1 x 2 . . . x n − 1 x n , 0 . x n x n − 1 . . . x 2 x 1 ) : x i = 0 , 1 } Theorem (van der Corput) The set V n satisfies with � D V n � ∞ � n ≈ log N Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  21. Irrational lattice Example Let α be an irrational number and let { x } denote the fractional part of x . Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  22. Irrational lattice Example Let α be an irrational number and let { x } denote the fractional �� i �� N − 1 part of x . Define P N = N , { i α } i =0 Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  23. Irrational lattice Example Let α be an irrational number and let { x } denote the fractional �� i �� N − 1 part of x . Define P N = N , { i α } i =0 Theorem If the partial quotients of the continued fraction of α are bounded, then the discrepancy function of this set satisfies � D N � ∞ ≈ log N . Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  24. Irrational lattice Example Let α be an irrational number and let { x } denote the fractional �� i �� N − 1 part of x . Define P N = N , { i α } i =0 Theorem If the partial quotients of the continued fraction of α are bounded, then the discrepancy function of this set satisfies � D N � ∞ ≈ log N . In particular works for quadratic irrationalities α = u + √ v . Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  25. Irrational lattice Example Let α be an irrational number and let { x } denote the fractional �� i �� N − 1 part of x . Define P N = N , { i α } i =0 Theorem If the partial quotients of the continued fraction of α are bounded, then the discrepancy function of this set satisfies � D N � ∞ ≈ log N . In particular works for quadratic irrationalities α = u + √ v . The idea goes as far back as 1904 (Lerch) Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  26. Low discrepancy sets √ 2) lattice with N = 2 12 points The irrational ( α = Discrepancy ≈ log N Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  27. Low discrepancy sets The van der Corput set with N = 2 12 points Discrepancy ≈ log N Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  28. Low discrepancy sets Random set with N = 2 12 points √ Discrepancy ≈ N Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  29. L 2 bounds Theorem (K. Roth) In dimension d = 2 , for any N-point set P N ⊂ [0 , 1] 2 , � � � � D N � 2 � log N Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  30. L 2 bounds Theorem (K. Roth) In dimension d = 2 , for any N-point set P N ⊂ [0 , 1] 2 , � � � � D N � 2 � log N Standard sets fail to meet this bound For the van der Corput set and the irrational lattice, we have � � � D N � 2 ≈ log N Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  31. Remedies 1. Davenport’s reflection (symmetrization) Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  32. Remedies 1. Davenport’s reflection (symmetrization) 2. Digital shifts (digit-scrambling) Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  33. Remedies 1. Davenport’s reflection (symmetrization) 2. Digital shifts (digit-scrambling) 3. Cyclic shifts (mod 1) Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  34. Remedies 1. Davenport’s reflection (symmetrization) 2. Digital shifts (digit-scrambling) 3. Cyclic shifts (mod 1) Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  35. Remedy: Cyclic shifts �� � � Define V α n = ( x + α ) mod 1 , y : ( x , y ) ∈ V n van der Corput set with N = 2 8 points Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  36. Remedy: Cyclic shifts �� � � Define V α n = ( x + α ) mod 1 , y : ( x , y ) ∈ V n van der Corput set with N = 2 8 points translated (mod 1) by 1 / 8 Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  37. Remedy: Cyclic shifts �� � � Define V α n = ( x + α ) mod 1 , y : ( x , y ) ∈ V n van der Corput set with N = 2 8 points translated (mod 1) by 2 / 8 Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  38. Remedy: Cyclic shifts �� � � Define V α n = ( x + α ) mod 1 , y : ( x , y ) ∈ V n van der Corput set with N = 2 8 points translated (mod 1) by 3 / 8 Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  39. Remedy: Cyclic shifts �� � � Define V α n = ( x + α ) mod 1 , y : ( x , y ) ∈ V n van der Corput set with N = 2 8 points translated (mod 1) by 4 / 8 Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  40. Remedy: Cyclic shifts �� � � Define V α n = ( x + α ) mod 1 , y : ( x , y ) ∈ V n Theorem (K. Roth, 1979) � � � � D V α � log N E α 2 � n Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

  41. Remedy: Cyclic shifts �� � � Define V α n = ( x + α ) mod 1 , y : ( x , y ) ∈ V n Theorem (K. Roth, 1979) � � � � D V α � log N E α 2 � n Theorem (D.B., 2008) For α = 1 − k 2 n , where � � n 2 = 54 n 1 k = 000111 ... 000111 � 00001111 ... 00001111 � �� � �� � 17 2 n 1 digits n 2 digits we have � � � � D V α � 2 � log N n Dmitriy Bilyk Geometric Discrepancy and Harmonic Analysis

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend