constructive discrepancy minimization for convex sets
play

Constructive Discrepancy Minimization for Convex Sets Thomas - PowerPoint PPT Presentation

Constructive Discrepancy Minimization for Convex Sets Thomas Rothvoss UW Seattle Discrepancy theory Set system S = { S 1 , . . . , S m } , S i [ n ] i S b b b Discrepancy theory 1 Set system S = { S 1 , . . . , S m } , S i


  1. Constructive Discrepancy Minimization for Convex Sets Thomas Rothvoss UW Seattle

  2. Discrepancy theory ◮ Set system S = { S 1 , . . . , S m } , S i ⊆ [ n ] i S

  3. b b b Discrepancy theory − 1 ◮ Set system S = { S 1 , . . . , S m } , S i ⊆ [ n ] ◮ Coloring χ : [ n ] → {− 1 , +1 } − 1 +1 i S

  4. b b b Discrepancy theory − 1 ◮ Set system S = { S 1 , . . . , S m } , S i ⊆ [ n ] ◮ Coloring χ : [ n ] → {− 1 , +1 } − 1 +1 ◮ Discrepancy i S � � � disc( S ) = χ :[ n ] →{± 1 } max min χ ( i ) � . � � � S ∈S i ∈ S

  5. b b b Discrepancy theory − 1 ◮ Set system S = { S 1 , . . . , S m } , S i ⊆ [ n ] ◮ Coloring χ : [ n ] → {− 1 , +1 } − 1 +1 ◮ Discrepancy i S � � � disc( S ) = χ :[ n ] →{± 1 } max min χ ( i ) � . � � � S ∈S i ∈ S Known results: ◮ n sets, n elements: disc( S ) = O ( √ n ) [Spencer ’85]

  6. b b b Discrepancy theory − 1 ◮ Set system S = { S 1 , . . . , S m } , S i ⊆ [ n ] ◮ Coloring χ : [ n ] → {− 1 , +1 } − 1 +1 ◮ Discrepancy i S � � � disc( S ) = χ :[ n ] →{± 1 } max min χ ( i ) � . � � � S ∈S i ∈ S Known results: ◮ n sets, n elements: disc( S ) = O ( √ n ) [Spencer ’85] ◮ Every element in ≤ t sets: disc( S ) < 2 t [Beck & Fiala ’81]

  7. b b b Discrepancy theory − 1 ◮ Set system S = { S 1 , . . . , S m } , S i ⊆ [ n ] ◮ Coloring χ : [ n ] → {− 1 , +1 } − 1 +1 ◮ Discrepancy i S � � � disc( S ) = χ :[ n ] →{± 1 } max min χ ( i ) � . � � � S ∈S i ∈ S Known results: ◮ n sets, n elements: disc( S ) = O ( √ n ) [Spencer ’85] ◮ Every element in ≤ t sets: disc( S ) < 2 t [Beck & Fiala ’81] Main method: Find a partial coloring χ : [ n ] → { 0 , ± 1 } ◮ low discrepancy max S ∈S | χ ( S ) | ◮ | supp( χ ) | ≥ Ω( n )

  8. Discrepancy theory (2) Lemma (Spencer) For m set on n ≤ m elements there is a partial coloring of � n log 2 m discrepancy O ( n ). ◮ Run argument log n times ◮ Total discrepancy is � √ n + n/ 2 2 + . . . + 1 = O ( √ n ) � � n/ 2 +

  9. Thm of Spencer-Gluskin-Giannopolous ( − 1 , 1) (1 , 1) 0 ( − 1 , − 1) (1 , − 1)

  10. Thm of Spencer-Gluskin-Giannopolous j ∈ S i x j | ≤ 100 √ n ∀ i ∈ [ n ] � x ∈ R n : | � � Goal: For K := 0 K

  11. Thm of Spencer-Gluskin-Giannopolous j ∈ S i x j | ≤ 100 √ n ∀ i ∈ [ n ] � x ∈ R n : | � � Goal: For K := find a point x ∈ {− 1 , 1 } n ∩ K 0 x K

  12. Thm of Spencer-Gluskin-Giannopolous j ∈ S i x j | ≤ 100 √ n ∀ i ∈ [ n ] � x ∈ R n : | � � Goal: For K := find a point x ∈ {− 1 , 0 , 1 } n ∩ K with | supp( x ) | ≥ Ω( n ). 0 x K

  13. Thm of Spencer-Gluskin-Giannopolous j ∈ S i x j | ≤ 100 √ n ∀ i ∈ [ n ] � x ∈ R n : | � � Goal: For K := find a point x ∈ {− 1 , 0 , 1 } n ∩ K with | supp( x ) | ≥ Ω( n ). 0 ≥ 100 ≥ 100 K ◮ K is intersection of n strips of width 100

  14. Thm of Spencer-Gluskin-Giannopolous j ∈ S i x j | ≤ 100 √ n ∀ i ∈ [ n ] � x ∈ R n : | � � Goal: For K := find a point x ∈ {− 1 , 0 , 1 } n ∩ K with | supp( x ) | ≥ Ω( n ). 0 ≥ 100 ≥ 100 K ◮ K is intersection of n strips of width 100 ◮ Gaussian measure γ n ( K ) ≥ ( γ n (width 100 strip)) n ≥ e − n/ 100

  15. Thm of Spencer-Gluskin-Giannopolous j ∈ S i x j | ≤ 100 √ n ∀ i ∈ [ n ] � x ∈ R n : | � � Goal: For K := find a point x ∈ {− 1 , 0 , 1 } n ∩ K with | supp( x ) | ≥ Ω( n ). 0 x K ◮ K is intersection of n strips of width 100 ◮ Gaussian measure γ n ( K ) ≥ ( γ n (width 100 strip)) n ≥ e − n/ 100 ◮ Counting argument: any such K admits partial coloring

  16. Gaussian measure Lemma (Sidak-Kathri ’67) For K convex and symmetric and strip S , γ n ( K ∩ S ) ≥ γ n ( K ) · γ n ( S ) K 0 0 S

  17. Gaussian measure Lemma (Sidak-Kathri ’67) For K convex and symmetric and strip S , γ n ( K ∩ S ) ≥ γ n ( K ) · γ n ( S ) K 0 S

  18. Partial coloring approaches ◮ Spencer ’85, Gluskin ’87, Giannopolous ’97: ◮ (+) very general ◮ ( − ) non-constructive

  19. Partial coloring approaches ◮ Spencer ’85, Gluskin ’87, Giannopolous ’97: ◮ (+) very general ◮ ( − ) non-constructive ◮ Bansal ’10: SDP-based random walk for Spencer’s Thm ◮ (+) poly-time ◮ ( − ) custom-tailored to Spencers setting

  20. Partial coloring approaches ◮ Spencer ’85, Gluskin ’87, Giannopolous ’97: ◮ (+) very general ◮ ( − ) non-constructive ◮ Bansal ’10: SDP-based random walk for Spencer’s Thm ◮ (+) poly-time ◮ ( − ) custom-tailored to Spencers setting ◮ Lovett-Meka ’12: ◮ (+) poly-time ◮ (+) simple and elegant ◮ (+ / − ) Works for any K = { x : |� x, v i �| ≤ λ i ∀ i ∈ [ m ] } i / 16 ≤ n with � m i =1 e − λ 2 16

  21. Our main result Theorem (R. 2014) For a convex symmetric set K ⊆ R n with γ n ( K ) ≥ e − δn , one can find a y ∈ K ∩ [ − 1 , 1] n with |{ i : y i = ± 1 }| ≥ εn in poly-time . [ − 1 , 1] n K y ∗ 0

  22. Our main result Theorem (R. 2014) For a convex symmetric set K ⊆ R n with γ n ( K ) ≥ e − δn , one can find a y ∈ K ∩ [ − 1 , 1] n with |{ i : y i = ± 1 }| ≥ εn in poly-time . Algorithm: (1) take a random x ∗ ∼ γ n [ − 1 , 1] n K 0 x ∗

  23. Our main result Theorem (R. 2014) For a convex symmetric set K ⊆ R n with γ n ( K ) ≥ e − δn , one can find a y ∈ K ∩ [ − 1 , 1] n with |{ i : y i = ± 1 }| ≥ εn in poly-time . Algorithm: (1) take a random x ∗ ∼ γ n (2) compute y ∗ = argmin {� x ∗ − y � 2 | y ∈ K ∩ [ − 1 , 1] n } [ − 1 , 1] n K 0 y ∗ x ∗

  24. Isoperimetric inequality ◮ For set K K

  25. Isoperimetric inequality ◮ For set K , let K ∆ := { x : d ( x, K ) ≤ ∆ } K ∆ ∆ K

  26. Isoperimetric inequality ◮ For set K , let K ∆ := { x : d ( x, K ) ≤ ∆ } K ∆ ∆ K Lemma γ n ( K ) ≥ e − δn = δn ) ≥ 1 − e − δn ⇒ γ n ( K 3 √

  27. Isoperimetric inequality ◮ For set K , let K ∆ := { x : d ( x, K ) ≤ ∆ } K ∆ ∆ K Lemma γ n ( K ) ≥ e − δn = δn ) ≥ 1 − e − δn ⇒ γ n ( K 3 √ ◮ Isoperimetric inequality: worst case are half planes! 1 2 π e − z 2 / 2 √ z γ n = e − δn γ n = e − δn

  28. Isoperimetric inequality ◮ For set K , let K ∆ := { x : d ( x, K ) ≤ ∆ } K ∆ ∆ K Lemma γ n ( K ) ≥ e − δn = δn ) ≥ 1 − e − δn ⇒ γ n ( K 3 √ ◮ Isoperimetric inequality: worst case are half planes! 1 2 π e − z 2 / 2 √ z √ ≤ 3 δn γ n = e − δn γ n = e − δn

  29. Analysis [ − 1 , 1] n K 0

  30. Analysis √ n ◮ W.h.p. � x ∗ − y ∗ � 2 ≥ 1 [ − 1 , 1] n K 5 y ∗ 0 x ∗

  31. Analysis √ n ◮ W.h.p. � x ∗ − y ∗ � 2 ≥ 1 [ − 1 , 1] n K 5 ◮ For any Q with γ n ( Q ) ≥ e − o ( n ) : 5 · √ n ] ≤ e − Ω( n ) y ∗ Pr[ d ( x ∗ , Q ) ≥ 1 0 x ∗

  32. Analysis √ n ◮ W.h.p. � x ∗ − y ∗ � 2 ≥ 1 [ − 1 , 1] n K 5 ◮ For any Q with γ n ( Q ) ≥ e − o ( n ) : 5 · √ n ] ≤ e − Ω( n ) y ∗ Pr[ d ( x ∗ , Q ) ≥ 1 0 ◮ Def. I ∗ := { i : | y ∗ x ∗ i | = 1 } Suppose | I ∗ | ≤ εn

  33. Analysis √ n ◮ W.h.p. � x ∗ − y ∗ � 2 ≥ 1 [ − 1 , 1] n K 5 ◮ For any Q with γ n ( Q ) ≥ e − o ( n ) : 5 · √ n ] ≤ e − Ω( n ) y ∗ Pr[ d ( x ∗ , Q ) ≥ 1 0 ◮ Def. I ∗ := { i : | y ∗ x ∗ i | = 1 } Suppose | I ∗ | ≤ εn ◮ K ( I ∗ ) := K ∩ {| x i | ≤ 1 : i ∈ I ∗ } K ( I ∗ )

  34. Analysis √ n ◮ W.h.p. � x ∗ − y ∗ � 2 ≥ 1 [ − 1 , 1] n K 5 ◮ For any Q with γ n ( Q ) ≥ e − o ( n ) : 5 · √ n ] ≤ e − Ω( n ) y ∗ Pr[ d ( x ∗ , Q ) ≥ 1 0 ◮ Def. I ∗ := { i : | y ∗ x ∗ i | = 1 } Suppose | I ∗ | ≤ εn ◮ K ( I ∗ ) := K ∩ {| x i | ≤ 1 : i ∈ I ∗ } K ( I ∗ ) ◮ � x ∗ − y ∗ � 2 = d ( y ∗ , K ( I ∗ ))

  35. Analysis √ n ◮ W.h.p. � x ∗ − y ∗ � 2 ≥ 1 [ − 1 , 1] n K 5 ◮ For any Q with γ n ( Q ) ≥ e − o ( n ) : 5 · √ n ] ≤ e − Ω( n ) y ∗ Pr[ d ( x ∗ , Q ) ≥ 1 0 ◮ Def. I ∗ := { i : | y ∗ x ∗ i | = 1 } Suppose | I ∗ | ≤ εn ◮ K ( I ∗ ) := K ∩ {| x i | ≤ 1 : i ∈ I ∗ } K ( I ∗ ) ◮ � x ∗ − y ∗ � 2 = d ( y ∗ , K ( I ∗ )) ◮ K ( I ∗ ) still large: γ n ( K ( I ∗ )) ≥ γ n ( K ) · ( γ n (strip of width 1)) εn ≥ e − 2 δn

  36. Analysis √ n ◮ W.h.p. � x ∗ − y ∗ � 2 ≥ 1 [ − 1 , 1] n K 5 ◮ For any Q with γ n ( Q ) ≥ e − o ( n ) : 5 · √ n ] ≤ e − Ω( n ) y ∗ Pr[ d ( x ∗ , Q ) ≥ 1 0 ◮ Def. I ∗ := { i : | y ∗ x ∗ i | = 1 } Suppose | I ∗ | ≤ εn ◮ K ( I ∗ ) := K ∩ {| x i | ≤ 1 : i ∈ I ∗ } K ( I ∗ ) ◮ � x ∗ − y ∗ � 2 = d ( y ∗ , K ( I ∗ )) ◮ K ( I ∗ ) still large: γ n ( K ( I ∗ )) ≥ γ n ( K ) · ( γ n (strip of width 1)) εn ≥ e − 2 δn √ 3 δ · √ n ≪ 1 √ n ◮ W.h.p. d ( x ∗ , K ( I ∗ )) ≤ 5

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend