discrepancy of random set systems
play

Discrepancy of Random Set Systems Rebecca Hoberg and Thomas Rothvo - PowerPoint PPT Presentation

Discrepancy of Random Set Systems Rebecca Hoberg and Thomas Rothvo Discrepancy theory Set system with m sets, n elements i S b b b Discrepancy theory 1 Set system with m sets, n elements Coloring x { 1 , +1 } n 1


  1. Discrepancy of Random Set Systems Rebecca Hoberg and Thomas Rothvoß

  2. Discrepancy theory ◮ Set system with m sets, n elements i S

  3. b b b Discrepancy theory − 1 ◮ Set system with m sets, n elements ◮ Coloring x ∈ {− 1 , +1 } n − 1 +1 i S

  4. b b b Discrepancy theory − 1 ◮ Set system with m sets, n elements ◮ Coloring x ∈ {− 1 , +1 } n − 1 +1   1 1 0 i S ◮ A = 1 0 1   0 1 1

  5. b b b Discrepancy theory − 1 ◮ Set system with m sets, n elements ◮ Coloring x ∈ {− 1 , +1 } n − 1 +1   1 1 0 i S ◮ A = 1 0 1   0 1 1 ◮ disc( A ) = x ∈{− 1 , 1 } n � Ax � ∞ min

  6. b b b Discrepancy theory − 1 ◮ Set system with m sets, n elements ◮ Coloring x ∈ {− 1 , +1 } n − 1 +1   1 1 0 i S ◮ A = 1 0 1   0 1 1 ◮ disc( A ) = x ∈{− 1 , 1 } n � Ax � ∞ min Known results: ◮ n sets, n elements: disc( A ) = O ( √ n ) [Spencer ’85]

  7. b b b Discrepancy theory − 1 ◮ Set system with m sets, n elements ◮ Coloring x ∈ {− 1 , +1 } n − 1 +1   1 1 0 i S ◮ A = 1 0 1   0 1 1 ◮ disc( A ) = x ∈{− 1 , 1 } n � Ax � ∞ min Known results: ◮ n sets, n elements: disc( A ) = O ( √ n ) [Spencer ’85] ◮ Every element in ≤ t sets: disc( A ) < 2 t [Beck & Fiala ’81]

  8. b b b Discrepancy theory − 1 ◮ Set system with m sets, n elements ◮ Coloring x ∈ {− 1 , +1 } n − 1 +1   1 1 0 i S ◮ A = 1 0 1   0 1 1 ◮ disc( A ) = x ∈{− 1 , 1 } n � Ax � ∞ min Known results: ◮ n sets, n elements: disc( A ) = O ( √ n ) [Spencer ’85] ◮ Every element in ≤ t sets: disc( A ) < 2 t [Beck & Fiala ’81] √ ◮ Beck-Fiala Conjecture: disc( A ) ≤ O ( t )

  9. b b b Discrepancy theory − 1 ◮ Set system with m sets, n elements ◮ Coloring x ∈ {− 1 , +1 } n − 1 +1   1 1 0 i S ◮ A = 1 0 1   0 1 1 ◮ disc( A ) = x ∈{− 1 , 1 } n � Ax � ∞ min Known results: ◮ n sets, n elements: disc( A ) = O ( √ n ) [Spencer ’85] ◮ Every element in ≤ t sets: disc( A ) < 2 t [Beck & Fiala ’81] √ ◮ Beck-Fiala Conjecture: disc( A ) ≤ O ( t ) Theorem (H., Rothvoss ’18) Suppose n ≥ ˜ Θ( m 2 ) , entries of A ∈ { 0 , 1 } m × n chosen indep. with prob. p . Then with high probability disc ( A ) ≤ 1 .

  10. Fourier Analysis ◮ Suppose X ∈ Z m a random variable, θ ∈ R m . ◮ We define ˆ X ( θ ) = E [ e 2 πi � X,θ � ]

  11. Fourier Analysis ◮ Suppose X ∈ Z m a random variable, θ ∈ R m . ◮ We define ˆ � X ( θ ) = E [ e 2 πi � X,θ � ] = Pr[ X = λ ] e 2 πi � X,θ � λ ∈ Z m

  12. Fourier Analysis ◮ Suppose X ∈ Z m a random variable, θ ∈ R m . ◮ We define ˆ � X ( θ ) = E [ e 2 πi � X,θ � ] = Pr[ X = λ ] e 2 πi � X,θ � λ ∈ Z m For λ ∈ Z m we have ◮ Fourier inversion formula: � ˆ X ( θ ) e − 2 πi � λ,θ � dθ Pr[ X = λ ] = θ ∈ [ − 1 2 , 1 2 ) m

  13. Fourier Analysis ◮ Suppose X ∈ Z m a random variable, θ ∈ R m . ◮ We define ˆ � X ( θ ) = E [ e 2 πi � X,θ � ] = Pr[ X = λ ] e 2 πi � X,θ � λ ∈ Z m ◮ Fourier inversion formula: For λ = 0 we have � ˆ Pr[ X = 0] = X ( θ ) dθ θ ∈ [ − 1 2 , 1 2 ) m

  14. Fourier Analysis for Discrepancy Theory For fixed A ∈ { 0 , 1 } m × n : ◮ Choose x ∼ {− 1 , 1 } n uniformly, and let D = Ax .

  15. Fourier Analysis for Discrepancy Theory For fixed A ∈ { 0 , 1 } m × n : ◮ Choose x ∼ {− 1 , 1 } n uniformly, and let D = Ax . ◮ Suffices to show Pr[ D + R = 0] > 0 where � R � ∞ ≤ ∆ chosen at random

  16. Fourier Analysis for Discrepancy Theory For fixed A ∈ { 0 , 1 } m × n : ◮ Choose x ∼ {− 1 , 1 } n uniformly, and let D = Ax . ◮ Suffices to show Pr[ D + R = 0] > 0 where � R � ∞ ≤ ∆ chosen at random ◮ X = D + R ∈ Z m . We have � ˆ Pr[ X = 0] = X ( θ ) dθ θ ∈ [ − 1 2 , 1 2 ) m

  17. Fourier Analysis for Discrepancy Theory For fixed A ∈ { 0 , 1 } m × n : ◮ Choose x ∼ {− 1 , 1 } n uniformly, and let D = Ax . ◮ Suffices to show Pr[ D + R = 0] > 0 where � R � ∞ ≤ ∆ chosen at random ◮ X = D + R ∈ Z m . We have � ˆ Pr[ X = 0] = X ( θ ) dθ θ ∈ [ − 1 2 , 1 2 ) m � D ( θ ) ˆ ˆ = R ( θ ) dθ θ ∈ [ − 1 2 , 1 2 ) m

  18. The Fourier Coefficients ˆ e 2 πi � D,θ � � � D ( θ ) = E

  19. The Fourier Coefficients ˆ e 2 πi � Ax,θ � � � D ( θ ) = E x ∼{− 1 , 1 } n

  20. The Fourier Coefficients n ˆ � x j [ e 2 πix j � A j ,θ � ] e 2 πi � Ax,θ � � � D ( θ ) = = E E x ∼{− 1 , 1 } n j =1 where A j ∈ { 0 , 1 } m the j th column of A .

  21. The Fourier Coefficients n ˆ � e 2 πi � Ax,θ � � 2 π � A j , θ � � � � D ( θ ) = = cos E x ∼{− 1 , 1 } n j =1 where A j ∈ { 0 , 1 } m the j th column of A .

  22. b b b b b b b b b The Fourier Coefficients n ˆ � e 2 πi � Ax,θ � � 2 π � A j , θ � � � � D ( θ ) = = cos E x ∼{− 1 , 1 } n j =1 where A j ∈ { 0 , 1 } m the j th column of A . θ ∈ [ − 1 2 , 1 2 ] m 0

  23. b b b b b b b b b The Fourier Coefficients n ˆ � e 2 πi � Ax,θ � � 2 π � A j , θ � � � � D ( θ ) = = cos E x ∼{− 1 , 1 } n j =1 where A j ∈ { 0 , 1 } m the j th column of A . 4 for all j , then ˆ ◮ If |� A j , θ �| ≤ 1 D ( θ ) ≥ 0. θ ∈ [ − 1 2 , 1 2 ] m 0

  24. b b b b b b b b b The Fourier Coefficients n ˆ � e 2 πi � Ax,θ � � 2 π � A j , θ � � � � D ( θ ) = = cos E x ∼{− 1 , 1 } n j =1 where A j ∈ { 0 , 1 } m the j th column of A . 4 for all j , then ˆ ◮ If |� A j , θ �| ≤ 1 D ( θ ) ≥ 0. θ ∈ [ − 1 2 , 1 2 ] m 0 � B 2 ( 0 , O ( 1 t ))

  25. b b b b b b b b b The Fourier Coefficients n ˆ � e 2 πi � Ax,θ � � 2 π � A j , θ � � � � D ( θ ) = = cos E x ∼{− 1 , 1 } n j =1 where A j ∈ { 0 , 1 } m the j th column of A . 4 for all j , then ˆ ◮ If |� A j , θ �| ≤ 1 D ( θ ) ≥ 0. ◮ If � A j , θ � ≈ half-integral for all j , then | ˆ D ( θ ) | large. θ ∈ [ − 1 2 , 1 2 ] m 0

  26. b b b b b b b b b The Fourier Coefficients n ˆ � e 2 πi � Ax,θ � � 2 π � A j , θ � � � � D ( θ ) = = cos E x ∼{− 1 , 1 } n j =1 where A j ∈ { 0 , 1 } m the j th column of A . 4 for all j , then ˆ ◮ If |� A j , θ �| ≤ 1 D ( θ ) ≥ 0. ◮ If � A j , θ � ≈ half-integral for all j , then | ˆ D ( θ ) | large. θ ∈ [ − 1 2 , 1 2 ] m 0

  27. b b b b b b b b b The Fourier Coefficients n ˆ � e 2 πi � Ax,θ � � 2 π � A j , θ � � � � D ( θ ) = = cos E x ∼{− 1 , 1 } n j =1 where A j ∈ { 0 , 1 } m the j th column of A . 4 for all j , then ˆ ◮ If |� A j , θ �| ≤ 1 D ( θ ) ≥ 0. ◮ If � A j , θ � ≈ half-integral for all j , then | ˆ D ( θ ) | large. ◮ If � A j , θ � far from half-integral for many j , then | ˆ D ( θ ) | small θ ∈ [ − 1 2 , 1 2 ] m 0

  28. b b b b b b b b b Analyzing ˆ D ( θ ) θ ∈ [ − 1 2 , 1 2 ] m 0

  29. b b b b b b b b b Analyzing ˆ D ( θ ) θ ∈ [ − 1 2 , 1 2 ] m 0 ◮ With high probability, � ˆ D ( θ ) dθ > n − Θ( m ) √ � θ � 2 ≤ 1 / t

  30. b b b b b b b b b Analyzing ˆ D ( θ ) θ ∈ [ − 1 2 , 1 2 ] m 0 ◮ With high probability, � ˆ D ( θ ) dθ > n − Θ( m ) √ � θ � 2 ≤ 1 / t ◮ With high probability, � | ˆ D ( θ ) | < e − Θ( n/m ) √ d 2 ( θ, 1 2 Z m ) > 1 / t

  31. Defining R Given A , define R ∈ Z m by � 0 � A i � 1 even R i = ± 1 � A i � 1 odd (chosen uniformly)

  32. Defining R Given A , define R ∈ Z m by � 0 � A i � 1 even R i = ± 1 � A i � 1 odd (chosen uniformly) Recall D = Ax where x ∈ {− 1 , 1 } n . ⇒ X = D + R ∈ 2 Z m . =

  33. Defining R Given A , define R ∈ Z m by � 0 � A i � 1 even R i = ± 1 � A i � 1 odd (chosen uniformly) Recall D = Ax where x ∈ {− 1 , 1 } n . ⇒ X = D + R ∈ 2 Z m . = � ˆ Pr[ X = 0] = 2 m X ( θ ) dθ θ ∈ [ − 1 4 , 1 4 ) m

  34. b b b b b b b b b Defining R Given A , define R ∈ Z m by � 0 � A i � 1 even R i = ± 1 � A i � 1 odd (chosen uniformly) Recall D = Ax where x ∈ {− 1 , 1 } n . ⇒ X = D + R ∈ 2 Z m . = � ˆ Pr[ X = 0] = 2 m X ( θ ) dθ θ ∈ [ − 1 4 , 1 4 ) m θ ∈ [ − 1 2 , 1 2 ] m 0

  35. Analyzing ˆ R ( θ ) We can compute ˆ � � R ( θ ) = E [ e 2 πi � R,θ � ] = E [ e 2 πiR i θ i ] = cos(2 πθ i ) � A i � 1 odd � A i � 1 odd

  36. Analyzing ˆ R ( θ ) We can compute ˆ � � R ( θ ) = E [ e 2 πi � R,θ � ] = E [ e 2 πiR i θ i ] = cos(2 πθ i ) � A i � 1 odd � A i � 1 odd and therefore 4 ] m , 0 ≤ ˆ ◮ For θ ∈ [ − 1 4 , 1 R ( θ ) ≤ 1

  37. Analyzing ˆ R ( θ ) We can compute ˆ � � R ( θ ) = E [ e 2 πi � R,θ � ] = E [ e 2 πiR i θ i ] = cos(2 πθ i ) � A i � 1 odd � A i � 1 odd and therefore 4 ] m , 0 ≤ ˆ ◮ For θ ∈ [ − 1 4 , 1 R ( θ ) ≤ 1 √ n , ˆ 1 R ( θ ) ≥ 1 ◮ For � θ � 2 ≤ 2 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend