online linear discrepancy
play

Online Linear Discrepancy Mitchel T. Keller , Noah Streib, and - PowerPoint PPT Presentation

Online Linear Discrepancy Mitchel T. Keller , Noah Streib, and William T. Trotter School of Mathematics Georgia Institute of Technology SIAM DM10 16 June 2010 Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 1 / 16 Outline


  1. Online Linear Discrepancy Mitchel T. Keller , Noah Streib, and William T. Trotter School of Mathematics Georgia Institute of Technology SIAM DM10 16 June 2010 Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 1 / 16

  2. Outline Linear Discrepancy 1 Online Algorithms 2 Online Linear Discrepancy 3 Lower Bounds Upper Bounds Representations Open Problems 4 Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 2 / 16

  3. Linear Discrepancy Defined Definition The linear discrepancy of a linear extension L of a poset P is ld ( P , L ) = max x � P y | h L ( y ) − h L ( x ) | . Definition (Tanenbaum, Trenk, and Fishburn 2001) The linear discrepancy of a poset P is ld ( P ) = min L ∈E ( P ) ld ( P , L ) if P is not a chain. If P is a chain, ld ( P ) = 0. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 3 / 16

  4. Facts About Linear Discrepancy Theorem (Fishburn, Tanenbaum, and Trenk 2001) If P is a poset with incomparability graph G , then ld ( P ) = bw ( G ) . Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 4 / 16

  5. Facts About Linear Discrepancy Theorem (Fishburn, Tanenbaum, and Trenk 2001) If P is a poset with incomparability graph G , then ld ( P ) = bw ( G ) . Theorem (Kloks, Kratsch, Müller 1999) ld ( P , L ) ≤ 3 ld ( P ) Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 4 / 16

  6. Facts About Linear Discrepancy Theorem (Fishburn, Tanenbaum, and Trenk 2001) If P is a poset with incomparability graph G , then ld ( P ) = bw ( G ) . Theorem (Kloks, Kratsch, Müller 1999) ld ( P , L ) ≤ 3 ld ( P ) Lemma (TTF 2001, Rautenbach 2005) (1) Linear discrepancy is monotonic. (2) ld ( P ) ≥ width ( P ) − 1 (3) ∆( P ) / 2 ≤ ld ( P ) ≤ 2 ∆( P ) − 2 Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 4 / 16

  7. Online Algorithm Framework (1) Builder presents poset one point at a time (2) Assigner makes irrevocable decision about where to insert it into a linear extension. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 5 / 16

  8. Online Algorithm Framework (1) Builder presents poset one point at a time (2) Assigner makes irrevocable decision about where to insert it into a linear extension. (3) Variant: Builder is required to provide a representation (interval, unit interval, etc.) Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 5 / 16

  9. Lower Bound for General Posets Lemma (K, Streib, Trotter) For each k ≥ 1 , Builder can construct an interval order P with ld ( P ) = k so that Assigner must form a linear extension L with ld ( P , L ) = 3 k − 1 . Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 6 / 16

  10. Lower Bound for General Posets L k + 1 z D A k + 1 x Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 7 / 16

  11. Lower Bound for General Posets D L z k z D u u A A k x x Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 7 / 16

  12. Lower Bound for General Posets D L z k z D u y u y A A k x x Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 7 / 16

  13. Lower Bound for General Posets D L z k z D u y C u k − 2 y C A A k x x Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 7 / 16

  14. Lower Bound for General Posets D L z k z D u y C u k − 2 y C B B k − 1 A A k x x Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 7 / 16

  15. Lower Bound for General Posets L opt D L z k D z z D u u y C C u k − 2 y y C B B B k − 1 x A A A k x x Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 7 / 16

  16. Lower Bound for Semiorders Lemma (KST) For each k ≥ 1 , Builder can construct a semiorder P with ld ( P ) = k so that Assigner must form a linear extension L with ld ( P , L ) = 2 k. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 8 / 16

  17. Upper Bounds Theorem (KST) If Builder constructs a poset P with ld ( P ) = k ≥ 1 and Assigner uses algorithm A to assemble a linear extension L of P , then (1) ld ( P , L ) ≤ 2 k if P is a semiorder and (2) ld ( P , L ) ≤ 3 k − 1 otherwise. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 9 / 16

  18. First Attempts at Algorithms M : Insert point in middle of its allowable range in existing linear extension. G : Insert point to minimize ld ( P , L ) for updated linear extension. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 10 / 16

  19. Critical Pairs Definition A pair ( x , y ) of incomparable points is a critical pair if (1) D ( x ) ⊆ D ( y ) (2) U ( y ) ⊆ U ( x ) Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 11 / 16

  20. Critical Pairs Definition A pair ( x , y ) of incomparable points is a critical pair if (1) D ( x ) ⊆ D ( y ) (2) U ( y ) ⊆ U ( x ) Lemma (K, Young 2010) (1) If x and y are incomparable and h L ( y ) − h L ( x ) = ld ( P , L ) , then ( x , y ) is a critical pair. (2) There exists an optimal linear extension L of P so that if ( x , y ) is a critical pair reversed by L, then ( y , x ) is also a critical pair. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 11 / 16

  21. An Optimal Online Linear Discrepancy Algorithm In four words: Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 12 / 16

  22. An Optimal Online Linear Discrepancy Algorithm In four words: Reverse few critical pairs. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 12 / 16

  23. An Optimal Online Linear Discrepancy Algorithm In four words: Reverse few critical pairs. A bit more detail Builder presents new point x . Assigner uses algorithm A : Identify one-way critical pairs ( x , u ) and ( v , x ) u 0 the L -smallest u , v 0 the L -largest v None of either type: x in any legal position Only ( x , u ) : x below u 0 Only ( v , x ) : x above v 0 v 0 < u 0 in L : x any legal position between v 0 and u 0 Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 12 / 16

  24. An Optimal Online Linear Discrepancy Algorithm In four words: Reverse few critical pairs. A bit more detail Builder presents new point x . Assigner uses algorithm A : Identify one-way critical pairs ( x , u ) and ( v , x ) u 0 the L -smallest u , v 0 the L -largest v None of either type: x in any legal position Only ( x , u ) : x below u 0 Only ( v , x ) : x above v 0 v 0 < u 0 in L : x any legal position between v 0 and u 0 u 0 < v 0 in L ? Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 12 / 16

  25. An Optimal Online Linear Discrepancy Algorithm In four words: Reverse few critical pairs. A bit more detail Builder presents new point x . Assigner uses algorithm A : Identify one-way critical pairs ( x , u ) and ( v , x ) u 0 the L -smallest u , v 0 the L -largest v None of either type: x in any legal position Only ( x , u ) : x below u 0 Only ( v , x ) : x above v 0 v 0 < u 0 in L : x any legal position between v 0 and u 0 u 0 < v 0 in L ? x anywhere between u 0 and v 0 Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 12 / 16

  26. A Look At Why It Works z y C : x w Lemma (KST) A never assembles a linear extension L with a copy of C such that x < w < z < y in L, all points less than x in L are less than y in P , and all points greater than y in L are greater than x in P . w z x y . . . . . . . . . < y in P > x in P Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 13 / 16

  27. Performance of A Theorem (KST) If Builder constructs a poset P with ld ( P ) = k ≥ 1 and Assigner uses algorithm A to assemble a linear extension L of P , then (1) ld ( P , L ) ≤ 2 k if P is a semiorder and (2) ld ( P , L ) ≤ 3 k − 1 otherwise. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 14 / 16

  28. Builder Required to Present Representation Theorem (KST) If Builder is required to present an interval representation of an interval order P with ld ( P ) = k ≥ 1 and Assigner constructs a linear extension L ordering by left endpoints, then (1) ld ( P , L ) = k if P is a semiorder and Builder presents unit intervals and (2) ld ( P , L ) ≤ 2 k otherwise. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 15 / 16

  29. Open Problems Online linear discrepancy No representation, interval orders without 1 + 4 ? Proper representation for semiorders instead of unit? Up-growing? Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 16 / 16

  30. Open Problems Online linear discrepancy No representation, interval orders without 1 + 4 ? Proper representation for semiorders instead of unit? Up-growing? � 3 ∆( P ) − 1 � Is ld ( P ) ≤ ? 2 Known for width 2, disconnected, interval orders. Best general upper bound is 2 ∆( P ) − 2. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 16 / 16

  31. Open Problems Online linear discrepancy No representation, interval orders without 1 + 4 ? Proper representation for semiorders instead of unit? Up-growing? � 3 ∆( P ) − 1 � Is ld ( P ) ≤ ? 2 Known for width 2, disconnected, interval orders. Best general upper bound is 2 ∆( P ) − 2. Is ld ( P ) ≥ dim ( P ) for dim ( P ) ≥ 5? Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 16 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend