compressive optical deflectometric tomography
play

COMPRESSIVE OPTICAL DEFLECTOMETRIC TOMOGRAPHY Adriana Gonz alez - PowerPoint PPT Presentation

COMPRESSIVE OPTICAL DEFLECTOMETRIC TOMOGRAPHY Adriana Gonz alez ICTEAM/UCL March 26th, 2014 1 ISPGroup - ICTEAM - UCL Universit e catholique de Louvain, Louvain-la-Neuve, Belgium. ISP Group 4 Professors 17 researchers


  1. COMPRESSIVE OPTICAL DEFLECTOMETRIC TOMOGRAPHY Adriana Gonz´ alez ICTEAM/UCL March 26th, 2014 1

  2. ISPGroup - ICTEAM - UCL Universit´ e catholique de Louvain, Louvain-la-Neuve, Belgium. ISP Group 4 Professors 17 researchers http://sites.uclouvain.be/ispgroup 12 PhD students Compressed Sensing Group Prof. Laurent Prof. Christophe De Dr. Prasad K´ evin Degraux Jacques Vleeschouwer Sudhakar 2

  3. Outline Optical Deflectometric Tomography 1 Compressiveness in RIM Reconstruction 2 Compressiveness in Acquisition 3 3

  4. Outline Optical Deflectometric Tomography 1 Compressiveness in RIM Reconstruction 2 Compressiveness in Acquisition 3 4

  5. Optical Deflectometric Tomography Interest Optical characterization of (transparent) objects ODT Tomographic Imaging Modality Measures light deviation caused by the difference in the object refractive index e 2 Deviated Light Rays α ( τ , θ ) p θ t θ θ e 1 τ n ( r ) Incident Light Rays 5

  6. Schlieren Deflectometer SLM Rotating CCD Lens 1 ( f ) Lens 2 Lens 3 (modulation by ) ϕ i object Intensity p Pinhole change α Uniform ∆ x = f tan α τ Light e 2 Optical axis Source e 3 − τ I 0 ∆ x Telecentric − θ y p system e 1 s p y p = � s p , ϕ i � 6

  7. Schlieren Deflectometer s p y p = � s p , ϕ i � 1 Compressiveness in ϕ sinusoidal pattern ⇒ 4 shifted patterns ϕ 1 , ϕ 2 , ϕ 3 , ϕ 4 ⇒ 4 measurements to recover α RIM reconstruction Assuming deflections at one point Objects RIM variation only on e 1 − e 2 ⇒ α , 2-D slices 7

  8. Schlieren Deflectometer s p y p = � s p , ϕ i � 2 Compressiveness in Deflections produced by several points acquisition Objects RIM variation also on e 3 ⇒ α and β , 3-D volume M binary modulation patterns ϕ i to eliminate nonlinearities 8

  9. Outline Optical Deflectometric Tomography 1 Compressiveness in RIM Reconstruction 2 Compressiveness in Acquisition 3 9

  10. Framework Joint work with Prof. Laurent Jacques and Prof. Christophe De Vleeschouwer from UCL and Dr. Philippe Antoine from Lambda-X Problem To reconstruct the refractive index map of transparent materials from light deflection measurements ( α ) under few orientations ( θ ) Assumption Objects are constant along the e 3 direction Deflections at only one point [1] A. Gonz´ alez et al. iTWIST12 [2] P. Antoine et al. OPTIMESS 2012 [3] A. Gonz´ alez et al. IPI Journal (2014) 10

  11. Continuous facts Mathematical Model e 2 Deviated Light Rays Eikonal equation � � α ( τ, θ ) d n d R curved : r ( s ) → d s r ( s ) = ∇ n p θ d s t θ Approximation θ small α → R straight : r · p θ = τ e 1 τ error < 10% n ( r ) ∆( τ, θ ) = sin( α ) Incident Light Rays � � � 1 δ ( τ − r · p θ ) d 2 r ∆( τ, θ ) = ∇ n ( r ) · p θ R 2 n r Deflectometric Central Slice Theorem � � � 2 π i ω R ∆( τ, θ ) e − 2 π i τ ω d τ = y ( ω, θ ) := n r � ω p θ n � � � : 2-D Fourier transform of � ω p θ n in Polar grid n 11

  12. Discrete Forward Model 2 π i ( δ r ) 2 diag( ω (1) , · · · , ω ( M ) ) � y = n n r ⇓ y = DF n + η n ∈ R N ; Cartesian grid of N = N 2 0 pixels; sampling: δ r y ∈ R M ; Polar grid of M = N τ N θ pixels; sampling: δτ , δθ D : 2 π i ( δ r ) 2 diag( ω (1) , · · · , ω ( M ) ) ∈ C M × M n r F ∈ C M × N : Non-equispaced Fourier Transform (NFFT) [4] η ∈ C M : numerical computations, model discretization, model discrepancy, observation noise [4] J. Keiner et al. (2009) 12

  13. ODT vs. AT y = DF n + η Main difference: Operator D Without noise η → classical tomographic model y = D − 1 y = F n ˜ For η � = 0 → Not a classical tomographic model - η : AWGN → D − 1 η not homoscedastic 13

  14. ODT vs. AT Observation: 1-D FT of sinograms along the τ direction 0.12 −3 0.1 0.1 −2 0.08 0.08 0.06 −1 Absorption 0.04 0.06 y( ω , θ ) ω 0 0.02 Tomography 0.04 0 1 0.02 −0.02 2 0 −0.04 3 −0.06 −0.02 0 50 100 150 −4 −3 −2 −1 0 1 2 3 4 θ ω −3 −3 4 x 10 x 10 −3 8 3 6 −2 Optical 2 4 −1 Deflection 2 y( ω , θ ) 1 ω 0 Tomography 0 0 1 −2 −1 2 −4 −2 3 0 50 100 150 θ −4 −3 −2 −1 0 1 2 3 4 ω 14

  15. Naive Reconstruction Methods y = Φ n + η = DF n + η Filtered Back Projection Analytical method Solution ˜ n FBP : - Filtering the tomographic projections AT: ramp filter; ODT: Hilbert filter - Backprojecting in the spatial domain by angular integration Minimum Energy Reconstruction n ME = Φ † y = Φ ∗ ( ΦΦ ∗ ) − 1 y ˜ ˜ ≡ n ME = arg min � u � 2 s . t . y = Φu u ∈ R N Noise Solution: Problems: Compressiveness ⇒ M ( N θ ) < N Regularization ⇒ ill-posed problem 15

  16. Sparsity prior Heterogeneous transparent materials with slowly varying refractive index separated by sharp interfaces TV and BV promote the perfect “cartoon shape” model “Sparse” gradient ⇓ Small Total Variation norm � n � TV := � ∇ n � 2 , 1 16

  17. Other priors Positive RIM ⇒ n � 0 The object is completely contained in the image. Pixels in the border are set to zero in order to guarantee uniqueness of the solution. ⇒ n | δ Ω = 0 SOLUTION UNIQUENESS 17

  18. TV- ℓ 2 reconstruction and Noise y = Φ n + η = DF n + η TV- ℓ 2 Reconstruction n TV − ℓ 2 = arg min ˜ � u � TV s . t . � y − Φu � 2 ≤ ε, u � 0 , u ∂ Ω = 0 u ∈ R N Noise Observation noise → σ 2 obs Modeling error → ray tracing with Snell law ≈ 10% Interpolation noise → NFFT error (very small) 18

  19. TV- ℓ 2 reconstruction y = Φ n + η = DF n + η TV- ℓ 2 Reconstruction ˜ n TV − ℓ 2 = arg min � u � TV s . t . � y − Φu � 2 ≤ ε, u � 0 , u ∂ Ω = 0 u ∈ R N ˜ n TV − ℓ 2 = arg min � u � TV + ı C ( Φu ) + ı P 0 ( u ) u ∈ R N Indicator function: ı X ( x ) = 0 if x ∈ X ; + ∞ otherwise ı C and ı P 0 are the indicator functions into the following convex sets: - C = { v ∈ C M : � y − v � ≤ ε } - P 0 = { u ∈ R N : u i ≥ 0 if i ∈ int Ω; u i = 0 if i ∈ ∂ Ω } Sum of 3 proper, lower semicontinuous, convex functions Reconstruction using CP algorithm [5] expanded in a product space [5] A. Chambolle and T. Pock. Journal of Mathematical Imaging and Vision. (2011) 19

  20. Reconstruction Algorithm Chambolle-Pock (CP)  v ( k +1) = prox σ F ⋆ ( v ( k ) + σ K ¯ x ( k ) ) min x ∈X F ( Kx ) + G ( x )   x ( k +1) = prox τ G ( x ( k ) − τ K ∗ v ( k +1) ) | 2 < 1  F , G : proper, lsc, convex; τσ | | | K | |  x ( k +1) = 2 x ( k +1) − x ( k ) ¯ Proximal mapping z ) + 1 z − z � 2 f : proper, lsc, convex ⇒ prox σ f z = arg min ¯ z σ f (¯ 2 � ¯ 2 e.g., prox σℓ 1 z = SoftTh( z , σ ) Conjugate function F ⋆ ( v ) = max ¯ v � v , ¯ v � − F (¯ v ) CP Product-Space Expansion t �  � x ( k ) � min F j ( K j x ) + G ( x ) v ( k +1) v ( k )  = prox σ F ⋆ + σ K j ¯ , j ∈ { 1 , · · · t }   j j x ∈X � t j j =1 x ( k +1) = prox τ t H ( x ( k ) − τ i v ( k +1) j =1 K ∗ ) j  t   x ( k +1) = 2 x ( k +1) − x ( k ) K = diag( K 1 , · · · , K t ) ¯ 20

  21. Results: TV − ℓ 2 vs. ME & FBP Compressiveness and noise robustness 45 100 40 35 80 30 60 25 RSNR [dB] RSNR [dB] 20 40 15 10 20 TV−L2 20dB 5 TV−L2 10dB TV−L2 ME 20dB 0 0 ME 10dB ME FBP 20dB −5 FBP FBP 10dB −20 −10 0 20 40 60 80 100 0 20 40 60 80 100 N θ / 360 [%] N θ / 360 [%] � ∆ � 2 � n � 2 MSNR = 20 log 10 RSNR = 20 log 10 � η � 2 � n − ˜ n � 2 21

  22. Results: TV- ℓ 2 vs. ME 0.012 0.01 No measurement noise (MSNR = ∞ ) 0.008 0.006 N θ / 360 = 25% 0.004 0.002 0 −3 x 10 0.012 12 0.01 10 0.008 8 6 0.006 4 0.004 2 0.002 0 0 ˜ ˜ n TV − ℓ 2 : RSNR = 71dB n ME : RSNR = 13dB 22

  23. Results: TV- ℓ 2 vs. ME 0.012 0.01 No measurement noise (MSNR = ∞ ) 0.008 0.006 N θ / 360 = 5% 0.004 0.002 0 −3 x 10 0.012 10 0.01 8 0.008 6 0.006 4 2 0.004 0 0.002 −2 0 ˜ ˜ n TV − ℓ 2 : RSNR = 67dB n ME : RSNR = 5dB 23

  24. Results: TV- ℓ 2 vs. ME 0.012 0.01 MSNR = 20dB 0.008 0.006 N θ / 360 = 25% 0.004 0.002 0 −3 −3 x 10 x 10 12 12 10 10 8 8 6 6 4 4 2 2 0 0 ˜ ˜ n TV − ℓ 2 : RSNR = 39dB n ME : RSNR = 13dB 24

  25. Results: TV − ℓ 2 Convergence 0 . 9 Non-Adaptive: step-sizes constant along the iterations → σ = τ = | | | K | | | Adaptive: step-sizes σ and τ are updated according to the residuals of the algorithm [6] −1 10 50 Adapt Non−Adapt −2 45 10 40 −3 10 ||x (k+1) − x (k) || / || x (k) || 35 RSNR [dB] −4 10 30 −5 10 25 −6 10 20 −7 10 15 Adapt Non−Adapt −8 10 10 0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000 # iter # iter [6] T. Goldstein et al. Preprint (2013) 25

  26. Experimental Results 0.06 50 0.05 100 Bundle of 10 fibers immersed in an optical fluid 0.04 150 0.03 200 0.02 Slices MSNR ≈ 10dB 250 0.01 300 0 350 N θ = 60 ⇒ N θ / 360 = 17% −0.01 400 −0.02 450 −0.03 500 −0.04 100 200 300 400 500 600 τ −3 −3 x 10 14 x 10 9 TV−L2 3 Expected 8 12 7 2.5 10 6 8 2 y (mm) 5 6 1.5 4 4 3 1 2 2 0.5 0 1 0 0 −2 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 3.5 x (mm) x (mm) 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend