the virtual element method for discrete fracture network
play

The Virtual Element Method for Discrete Fracture Network flow - PowerPoint PPT Presentation

Intro Model VEM Conforming Mortar Transport References The Virtual Element Method for Discrete Fracture Network flow simulations Stefano Berrone Dipartimento di Scienze Matematiche Giuseppe Luigi Lagrange Politecnico di Torino


  1. Intro Model VEM Conforming Mortar Transport References The Virtual Element Method for Discrete Fracture Network flow simulations Stefano Berrone Dipartimento di Scienze Matematiche “ Giuseppe Luigi Lagrange ” Politecnico di Torino stefano.berrone@polito.it joint work with Matias Benedetto, Andrea Borio, Sandra Pieraccini, Stefano Scial` o Georgia Tech Atlanta, October 26th, 2015 Stefano Berrone Polytopal Element Methods in Mathematics and Engineering 1

  2. Intro Model VEM Conforming Mortar Transport References Discrete fracture network and flow model: 3D network of intersecting fractures in the rock matrix Fractures are represented as planar polygons The flow only /mainly occurs in the fractures, i.e. Rock matrix is considered impervious Flow modeled by Darcy law in the fractures Flux balance and hydraulic head continuity imposed across Figure : Example of DFN fracture intersections ( traces ) No changes on the given DFN geometry stocastically generated (position, orientation, size, shape) → uncertainty quantification Many approaches in literature require some geometry modification Complex domain: difficulties in good quality mesh generation Stefano Berrone Polytopal Element Methods in Mathematics and Engineering 2

  3. Intro Model VEM Conforming Mortar Transport References Fracture model Insulated fracture formulation find H ∈ H 1 D ( F ) such that: (K ∇ H, ∇ v ) = ( q, v ) 2 (Γ N ) , ∀ v ∈ V =H 1 + � G N , v | Γ N � 0 , D ( F ) H − 1 1 2 (Γ N ) , H H is the hydraulic head on the fracture F ; K is the fracture transmissivity tensor: a symmetric and uniformly positive definite tensor containing the hydrological properties; n t K ∇ H = G N is the outward co-normal derivative of the ∂H ν = ˆ ∂ ˆ hydraulic head and ˆ n the unit outward vector normal to the boundary Γ N . Stefano Berrone Polytopal Element Methods in Mathematics and Engineering 3

  4. Intro Model VEM Conforming Mortar Transport References Fracture model Coupled fracture formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S . . . . . . . . . . . . . . . . . . . . . . � � � � . . . . . . . . . . . . . . . . . ∂H 1 . . . . . . . . . U S . . . . . . . . . . . . 1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F 1 . . . . . . ν 1 . . . . . . . . . . . . . . . . . . . . . . . ∂ ˆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S S . . . . . . . . . . . . . . . . . . . . . . . . . S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ω . . . . . . . . . . . . . . . . . . . . . . . � � � � . . . . . . . . . . . . . . ∂H 2 U S 2 = . . . . . . . . . . . . . . . . . . . . . . . . . . ν 2 . . . . . ∂ ˆ . . . . . . . . . . . . . . . . . . . . . . . S . . . . . S . . . . . . . . . . . . . . . . . . . . . . . . . . . . S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . For each trace S ∈ S on the fracture F i i = 1 , . . . , N , let use denote by � � ∂H i � � S ⊆ H − 1 U S U S 2 ( S ) i := i ∈ U ν i ∂ ˆ S S the flux entering in the fracture through the trace S , and U i ∈ U S i the tuple of fluxes U S i ∀ S ∈ S i Stefano Berrone Polytopal Element Methods in Mathematics and Engineering 4

  5. Intro Model VEM Conforming Mortar Transport References Fracture model Full fracture formulation Solving ∀ i ∈ I the problem: find H i ∈ H 1 D ( F i ) and U i ∈ S i such that: (K i ∇ H i , ∇ v ) = ( q i , v ) + � U i , v | S i � U S i , U S i ′ 2 (Γ iN ) , ∀ v ∈ V i =H 1 + � G iN , v | Γ iN � 0 , D ( F i ) H − 1 1 2 (Γ iN ) , H with additional conditions H i | S − H j | S = 0 , for i, j ∈ I S , ∀ S ∈ S , U S i + U S = 0 , for i, j ∈ I S , ∀ S ∈ S , j provides the hydraulic head H ∈ V = H 1 D (Ω) . H i is the hydraulic head on the fracture F i , H is the hydraulic head on Ω ; K i is the fracture transmissivity tensor: a symmetric and uniformly positive definite tensor containing the hydrological properties; ∂H i n t ν i = ˆ i K i ∇ H i = G iN is the outward co-normal derivative of the ∂ ˆ hydraulic head and ˆ n i the unit outward vector normal to the boundary Γ iN . Stefano Berrone Polytopal Element Methods in Mathematics and Engineering 5

  6. Intro Model VEM Conforming Mortar Transport References Fracture model Totally/Partially conforming meshes Figure : Totally conforming mesh Figure : Partially conforming mesh Stefano Berrone Polytopal Element Methods in Mathematics and Engineering 6

  7. Intro Model VEM Conforming Mortar Transport References Fracture model non-conforming meshes: 120 fractures, 256 traces DFN Figure : Non-conforming mesh on a 120 fracture DFN A reformulation as a PDE constrained optimization problem allows non conforming meshes. Stefano Berrone Polytopal Element Methods in Mathematics and Engineering 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend