schr odinger operator with sturm potentials fractal
play

Schr odinger operator with Sturm potentials Fractal dimensions Liu - PowerPoint PPT Presentation

Schr odinger operator with Sturm potential Cookie-Cutter-like sets Sketch of proof Schr odinger operator with Sturm potentials Fractal dimensions Liu Qinghui Beijing Institute of Technology Joint work with Qu Yanhui and Wen Zhiying


  1. Schr¨ odinger operator with Sturm potential Cookie-Cutter-like sets Sketch of proof Schr¨ odinger operator with Sturm potentials —Fractal dimensions Liu Qinghui Beijing Institute of Technology Joint work with Qu Yanhui and Wen Zhiying Hong Kong, Dec. 12, 2012 1 / 19

  2. Schr¨ odinger operator with Sturm potential Cookie-Cutter-like sets Sketch of proof Outline Schr¨ odinger operator with Sturm potential 1 Spectrum study history recent result Cookie-Cutter-like sets 2 Cantor set Cookie-Cutter set and Cookie-Cutter like set Sketch of proof 3 Bounded variation and bounded covariation Deal with different types Homogeneous Moran set 2 / 19

  3. Schr¨ odinger operator with Sturm potential Spectrum Cookie-Cutter-like sets study history Sketch of proof recent result Schr¨ odinger operator with Sturm potential odinger operator on l 2 ( Z ) : Schr¨ ( H α,V ψ ) n = ψ n − 1 + ψ n +1 + v n ψ n , ∀ n ∈ Z , ∀ ψ ∈ l 2 ( Z ) . ( v n ) n ∈ Z : potential. Sturm potential: v n = V χ [1 − α, 1) ( nα + φ mod 1) , ∀ n ∈ Z , α = [0; a 1 , a 2 , · · · ] : frequency V > 0 : coupling; φ ∈ [0 , 1) : phase (take φ = 0 ) Spectrum σ ( H α,V ) = { x ∈ R : xI − H α,V no bounded inverse } := σ . 1989, Bellissard and et. al.(BIST), Commun. Math. Phys. ∀ V > 0 , α irrational, L [ σ ] = 0 . 3 / 19

  4. Schr¨ odinger operator with Sturm potential Spectrum Cookie-Cutter-like sets study history Sketch of proof recent result Schr¨ odinger operator with Sturm potential odinger operator on l 2 ( Z ) : Schr¨ ( H α,V ψ ) n = ψ n − 1 + ψ n +1 + v n ψ n , ∀ n ∈ Z , ∀ ψ ∈ l 2 ( Z ) . ( v n ) n ∈ Z : potential. Sturm potential: v n = V χ [1 − α, 1) ( nα + φ mod 1) , ∀ n ∈ Z , α = [0; a 1 , a 2 , · · · ] : frequency V > 0 : coupling; φ ∈ [0 , 1) : phase (take φ = 0 ) Spectrum σ ( H α,V ) = { x ∈ R : xI − H α,V no bounded inverse } := σ . 1989, Bellissard and et. al.(BIST), Commun. Math. Phys. ∀ V > 0 , α irrational, L [ σ ] = 0 . 3 / 19

  5. Schr¨ odinger operator with Sturm potential Spectrum Cookie-Cutter-like sets study history Sketch of proof recent result Schr¨ odinger operator with Sturm potential odinger operator on l 2 ( Z ) : Schr¨ ( H α,V ψ ) n = ψ n − 1 + ψ n +1 + v n ψ n , ∀ n ∈ Z , ∀ ψ ∈ l 2 ( Z ) . ( v n ) n ∈ Z : potential. Sturm potential: v n = V χ [1 − α, 1) ( nα + φ mod 1) , ∀ n ∈ Z , α = [0; a 1 , a 2 , · · · ] : frequency V > 0 : coupling; φ ∈ [0 , 1) : phase (take φ = 0 ) Spectrum σ ( H α,V ) = { x ∈ R : xI − H α,V no bounded inverse } := σ . 1989, Bellissard and et. al.(BIST), Commun. Math. Phys. ∀ V > 0 , α irrational, L [ σ ] = 0 . 3 / 19

  6. Schr¨ odinger operator with Sturm potential Spectrum Cookie-Cutter-like sets study history Sketch of proof recent result Schr¨ odinger operator with Sturm potential odinger operator on l 2 ( Z ) : Schr¨ ( H α,V ψ ) n = ψ n − 1 + ψ n +1 + v n ψ n , ∀ n ∈ Z , ∀ ψ ∈ l 2 ( Z ) . ( v n ) n ∈ Z : potential. Sturm potential: v n = V χ [1 − α, 1) ( nα + φ mod 1) , ∀ n ∈ Z , α = [0; a 1 , a 2 , · · · ] : frequency V > 0 : coupling; φ ∈ [0 , 1) : phase (take φ = 0 ) Spectrum σ ( H α,V ) = { x ∈ R : xI − H α,V no bounded inverse } := σ . 1989, Bellissard and et. al.(BIST), Commun. Math. Phys. ∀ V > 0 , α irrational, L [ σ ] = 0 . 3 / 19

  7. Schr¨ odinger operator with Sturm potential Spectrum Cookie-Cutter-like sets study history Sketch of proof recent result Fractal dimensions Let α = [0; a 1 , a 2 , · · · ] , K ∗ = lim sup ( a 1 · · · a n ) 1 /n , ( a 1 · · · a n ) 1 /n K ∗ = lim inf n n 2004, L., Wen, Potential Analysis , V > 20 , • if K ∗ < ∞ , then 0 < dim H σ < 1 • if K ∗ = ∞ , then dim H σ = 1 . L., Qu, Wen, preprint, V > 25 , • if K ∗ < ∞ , then 0 < dim B σ < 1 • if K ∗ = ∞ , then dim B σ = 1 . 4 / 19

  8. Schr¨ odinger operator with Sturm potential Spectrum Cookie-Cutter-like sets study history Sketch of proof recent result Asymptotic property of Fractal dimension 2008, Damanik et. al., CMP , α = [0; a 1 , a 2 , · · · ] , a n ≡ 1 , √ lim V →∞ (log V ) dim B σ = − log( 2 − 1) . 2007, L., Peyri` ere, Wen, Comptes Randus Mathematique , sup n a n < ∞ , V > 20 , s ∗ , s ∗ pre-dim, dim H σ ≤ s ∗ ≤ s ∗ ≤ dim B σ , V →∞ s ∗ log V = − log f ∗ ( α ) . V →∞ s ∗ log V = − log f ∗ ( α ) , lim lim 2011, Fan, L., Wen, Ergodic Theory and Dynamical Systems , sup n a n < ∞ , then dim H σ = s ∗ ≤ s ∗ = dim B σ L., Qu, Wen, preprint, V > 25 , no restriction on { a n } , V →∞ (log V )dim H σ = − log f ∗ ( α ) , lim V →∞ (log V )dim B σ = − log f ∗ ( α ) . lim 5 / 19

  9. Schr¨ odinger operator with Sturm potential Spectrum Cookie-Cutter-like sets study history Sketch of proof recent result Case of bounded quotient 2011, Fan, L., Wen, Ergodic Theory and Dynamical Systems . Theorem Let α = [0; a 1 , a 2 , · · · ] , sup n a n < ∞ , V > 20 , dim B σ = s ∗ . dim H σ = s ∗ , Theorem If α = [0; a 1 , a 2 , a 3 , · · · ] with ( a n ) n ≥ 1 ultimate periodic, V > 20 s ∗ = s ∗ . For ( a n ) n ≥ 1 ultimately periodic, we give an algorithm so that one can estimation s ∗ in any accuracy. 6 / 19

  10. Schr¨ odinger operator with Sturm potential Spectrum Cookie-Cutter-like sets study history Sketch of proof recent result Case of unbounded quotient L., Qu, Wen, preprint. Theorem Let α = [0; a 1 , a 2 , · · · ] , V > 25 , dim B σ = s ∗ . dim H σ = s ∗ , V →∞ s ∗ · log V = − log f ∗ ( α ) . V →∞ s ∗ · log V = − log f ∗ ( α ) , lim lim s ∗ , s ∗ are continuous on V . Key techniques Cookie-Cutter-like structure trace formula Homogeneous Moran set 7 / 19

  11. Schr¨ odinger operator with Sturm potential Cantor set Cookie-Cutter-like sets Cookie-Cutter set and Cookie-Cutter like set Sketch of proof Cantor set 0 ≤ x ≤ 1 � 3 x, 2 Let I = [0 , 1] , f : I → R , f ( x ) = 2 < x ≤ 1 . 1 3(1 − x ) , Then E = { x ∈ I : ∀ n ≥ 0 , f n ( x ) ∈ I } = Cantor set, and dim H E = dim P E = dim B E = log 2 h µ ( f ) log 3 = sup log | Df | dµ. � µ : f − inv Cookie-Cutter: f non-linear. Cookie-Cutter-like: change f n to f n ◦ f n − 1 ◦ · · · ◦ f 1 8 / 19

  12. Schr¨ odinger operator with Sturm potential Cantor set Cookie-Cutter-like sets Cookie-Cutter set and Cookie-Cutter like set Sketch of proof Definition for Cookie-Cutter set Let I = [0 , 1] , I 1 , I 2 ⊂ I , and f : I 1 ∪ I 2 → I satisfy: (i) f | I 1 , f | I 2 is an 1 − 1 mapping to I . (ii) f is c 1+ γ H¨ older: | Df ( x ) − Df ( y ) | ≤ c | x − y | γ . (iii) f is Expansive, 1 < b ≤ | Df ( x ) | ≤ B < ∞ . E = { x ∈ I : ∀ n ≥ 0 , f n ( x ) ∈ I } Cookie-Cutter set of f . 9 / 19

  13. Schr¨ odinger operator with Sturm potential Cantor set Cookie-Cutter-like sets Cookie-Cutter set and Cookie-Cutter like set Sketch of proof Definition of Cookie-Cutter like set Given { ( f k , � q k j =1 I k j , c k , γ k , b k , B k ) } k ≥ 1 satisfy: (i’) f k | I k j is an 1 − 1 mapping to I . (ii’) f k is c 1+ γ k H¨ older (iii’) f k is Expansive. Cookie-Cutter-like set (CC-like set) = { x ∈ I : f k ◦ · · · ◦ f 1 ( x ) ∈ I, ∀ k ≥ 0 } . E 10 / 19

  14. Schr¨ odinger operator with Sturm potential Cantor set Cookie-Cutter-like sets Cookie-Cutter set and Cookie-Cutter like set Sketch of proof Symbol system and pre-dimension Let Ω n = � n k =1 { 1 , · · · , q k } , F n = f n ◦ · · · ◦ f 1 , ∀ ω ∈ Ω n , F n is monotone on I ω , F n ( I ω ) = I. ∀ n > 0 , { I ω } ω ∈ Ω n is a covering of E . ω ∈ Ω k | I ω | s k = 1 , and ∀ k ≥ 1 , let s k satisfies ( ∃ . 1 . ) � s ∗ = lim sup s ∗ = lim inf s k , s k . k k 11 / 19

  15. Schr¨ odinger operator with Sturm potential Cantor set Cookie-Cutter-like sets Cookie-Cutter set and Cookie-Cutter like set Sketch of proof Ma, Rao, Wen, Sci. China A, 2001 Let E be CC-like set for { ( f k , � q k j =1 I k j , c k , γ k , b k , B k ) } k ≥ 1 . Theorem dim H E = s ∗ , dim P E = dim B E = s ∗ . Theorem s ∗ , s ∗ depend continuously on { ( f k , � q k j =1 I k j , c k , γ k , b k , B k ) } k ≥ 1 . σ ( H α,V ) has a kind of CC-like structure (multi-type). Let α = [0; a 1 , a 2 , · · · ] , a k partly determines f k . ( a k ) k ≥ 1 bounded implies bounded expansive. 12 / 19

  16. Schr¨ odinger operator with Sturm potential Cantor set Cookie-Cutter-like sets Cookie-Cutter set and Cookie-Cutter like set Sketch of proof key properties [MRW01] Recall F n = f n ◦ · · · ◦ f 1 , ∀ ω ∈ Ω n , F n ( I ω ) = I . Bounded variation . ∃ ξ ≥ 1 , ∀ n ≥ 1 , ω ∈ Ω n , x, y ∈ I ω , ξ − 1 ≤ | DF n ( x ) | | I ω | ∼ | DF n ( x ) | − 1 . | DF n ( y ) | < ξ, Bounded covariation . ∀ m > k ≥ 1 , ω 1 , ω 2 ∈ Ω k , τ ∈ Ω k +1 ,m , ξ − 2 | I ω 2 ∗ τ | | I ω 2 | ≤ | I ω 1 ∗ τ | | I ω 1 | ≤ ξ 2 | I ω 2 ∗ τ | | I ω 2 | . Existence of Gibbs-like measure . Given β > 0 , there exist η > 0 and a probability measure µ β supported by E such that for any n ≥ 1 and ω 0 ∈ Ω n , we have | I ω 0 | β | I ω 0 | β η − 1 | I ω | β ≤ µ β ( I ω 0 ) ≤ η | I ω | β . � � ω ∈ Ω n ω ∈ Ω n 13 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend