periodic homogenization and effective mass theorems for
play

PERIODIC HOMOGENIZATION AND EFFECTIVE MASS THEOREMS FOR THE SCHR - PowerPoint PPT Presentation

Homogenization of Schr odinger equation 1 G. Allaire PERIODIC HOMOGENIZATION AND EFFECTIVE MASS THEOREMS FOR THE SCHR ODINGER EQUATION Gr egoire ALLAIRE, CMAP, Ecole Polytechnique. 1. Asymptotic expansions in periodic homogenization


  1. Homogenization of Schr¨ odinger equation 17 G. Allaire -II- TWO-SCALE CONVERGENCE METHOD This is a simpler method to prove the convergence theorem. Definition. A sequence of functions u ǫ in L 2 (Ω) is said to two-scale converge to a limit u 0 ( x, y ) belonging to L 2 (Ω × Y ) if, for any Y -periodic smooth function ϕ ( x, y ), it satisfies � x, x � � � � lim u ǫ ( x ) ϕ dx = u 0 ( x, y ) ϕ ( x, y ) dxdy. ǫ ǫ → 0 Ω Ω Y Theorem 1. From each bounded sequence u ǫ in L 2 (Ω) one can extract a subsequence, and there exists a limit u 0 ( x, y ) ∈ L 2 (Ω × Y ) such that this subsequence two-scale converges to u 0 . Theorem 2. Let u ǫ be a bounded sequence in H 1 (Ω). Then, up to a subsequence, u ǫ two-scale converges to a limit u 0 ( x, y ) ≡ u ( x ) ∈ H 1 (Ω), and ∇ u ǫ two-scale converges to ∇ x u ( x ) + ∇ y u 1 ( x, y ) with u 1 ∈ L 2 (Ω; H 1 # ( Y )).

  2. Homogenization of Schr¨ odinger equation 18 G. Allaire Lemma 3. For a bounded open set Ω, let B = C (¯ Ω; C # ( Y )) be the space of continuous functions ϕ ( x, y ) on ¯ Ω × Y which are Y -periodic in y . Then, B is a separable Banach space (i.e. it contains a dense countable family), is dense in L 2 (Ω × Y ), and there exists C > 0 such that x, x � � � | 2 dx ≤ C � ϕ � 2 | ϕ B , ǫ Ω and � x, x � � � � | 2 dx = | ϕ ( x, y ) | 2 dxdy, lim | ϕ ǫ ǫ → 0 Ω Ω Y for any ϕ ( x, y ) ∈ B . Remark. The same works with B = L 2 (Ω; C # ( Y )) and Ω not necessarily bounded.

  3. t ♠♥ ❛❜ ❝❞ ❡❢ ❣❤ ✐❥ ❦❧ ♦♣ ⑧ q q q q r r ⑦ ❫ r ◗❘ ❏ ❑▲ ▼ ▼◆ ◆ ❖P ❙❚ ❪❫ ⑧ ⑧ ❲❳ ❨❩ ❬❭ ❪ r s ■ ④ ③ ③ ③ ③ ④ ④ ⑤ ③ ⑤ ⑤ ⑥ ⑥ ⑥ ⑥ ③ ② s ✉✈ s s ⑦ t t t ✇ ② ✇① ① ② ② ② ② ■❏ ●❍ ⑦ ☛ ✜ ✛✜ ✛ ✙✚ ✗✘ ❸ ❸ ✓✔ ✑✒ ❸ ❹ ☞✌ ☛ ☛ ☛ ✤✥ ☎ ❺ ❹❺ � �✁ ✁ ✂✄ ☎✆ ✡ ✆ ✝✞ ✟✠ ✡ ✡ ✡ ✢✣ ❸ ❊❋ ❄ ❷ ⑨ ⑨ ⑨ ⑨ ⑧ ❄ ❸ ❅ ❅ ❆ ❆❇ ❇ ❈❉ ✽ ✼✽ ✼ ✺✻ ★✩ ✪ ✪✫ ✫ ✬✭ ✮✯ ✰✱ ❸ ❷ ❷ ❷ ✶✷ ❷ ❷ ⑦ Proof of Lemma 3. We mesh Ω with cubes of the type (0 , ǫ ) N Homogenization of Schr¨ � Ω | ϕ = � x, x � n ( ǫ ) i =1 ǫ ǫ N � | 2 dx = � odinger equation Y Ω = ∪ 1 ≤ i ≤ n ( ǫ ) Y ǫ | ϕ ( x ǫ � n ( ǫ ) i =1 i , y ) | 2 dy + O ( ǫ ) = ε � Y ǫ i ✦✎✦ ✧✎✧ ✏✎✏ ✍✎✍ ✕✎✕ ✖✎✖ ✲✎✲ ✳✎✳ | ϕ ✴✎✴ ✵✎✵ � i x, x 19 ǫ with Y ǫ � | 2 dx = Ω ❵✎❵ ❴✎❴ � Ω i = x ǫ � ❯✎❯ ❱✎❱ ✸✎✸ ✹✎✹ � n ( ǫ ) i =1 Y | ϕ ( x, y ) | 2 dx dy + O ( ǫ ) ✿✎✿ i + (0 , ǫ ) N . ✾✎✾ � ❀✎❀ ❁✎❁ ❂✎❂ ❶✎❶✎❶✎❶ Y ǫ ❃✎❃ ⑩✎⑩✎⑩✎⑩ i | ϕ � x ǫ i , x ǫ � G. Allaire | 2 dx + O ( ǫ )

  4. Homogenization of Schr¨ odinger equation 20 G. Allaire Proof of Theorem 1. By Schwarz inequality, we have 1 � � � � x, x x, x � � 2 � � � � � � � � u ǫ ( x ) ϕ dx � ≤ C ϕ dx ≤ C � ϕ � B . � � � � ǫ ǫ � � � Ω Ω Thus, the l.h.s. is a continuous linear form on B which can be identified to a duality product � µ ǫ , ϕ � B ′ ,B for some bounded sequence of measures µ ǫ . Since B is separable, one can extract a subsequence and there exists a limit µ 0 such µ ǫ converges to µ 0 in the weak * topology of B ′ (the dual of B ). On the other hand, Lemma 3 allows us to pass to the limit in the middle term above. It yields 1 � � � � 2 | ϕ ( x, y ) | 2 dxdy � � |� µ 0 , ϕ � B ′ ,B | ≤ C . � � � � Ω Y Therefore µ 0 is actually a continuous linear form on L 2 (Ω × Y ), by density of B in this space. Thus, there exists u 0 ( x, y ) ∈ L 2 (Ω × Y ) such that � � � µ 0 , ϕ � B ′ ,B = u 0 ( x, y ) ϕ ( x, y ) dxdy. Ω Y

  5. Homogenization of Schr¨ odinger equation 21 G. Allaire Proof of Theorem 2. Since u ǫ and ∇ u ǫ are bounded in L 2 (Ω), up to a subsequence, they two-scale converge to limits u 0 ( x, y ) ∈ L 2 (Ω × Y ) and ξ 0 ( x, y ) ∈ L 2 (Ω × Y ) N . Thus � x, x � � � � ∇ u ǫ ( x ) · � ξ 0 ( x, y ) · � ∀ � Ω; C ∞ # ( Y ) N � � lim ψ dx = ψ ( x, y ) dxdy ψ ∈ D . ǫ ǫ → 0 Ω Ω Y Integrating by parts the left hand side gives x, x x, x x, x � � � � � � � � �� ∇ u ǫ ( x ) · � div y � + ǫ div x � ǫ ψ dx = − u ǫ ( x ) ψ ψ dx. ǫ ǫ ǫ Ω Ω Passing to the limit yields � � u 0 ( x, y ) div y � u 0 ( x, y ) ≡ u ( x ) ∈ L 2 (Ω) . 0 = − ψ ( x, y ) dxdy ⇒ Ω Y Next, we choose � ψ such that div y � ψ ( x, y ) = 0. We obtain � x, x � x, x � � � � ∇ u ǫ ( x ) · � u ǫ ( x ) div x � ψ dx = − ψ dx. ǫ ǫ Ω Ω

  6. Homogenization of Schr¨ odinger equation 22 G. Allaire Passing to the two-scale limit � � � � ξ 0 ( x, y ) · � u ( x ) div x � ψ ( x, y ) dxdy = − ψ ( x, y ) dxdy. Ω Y Ω Y If � ψ does not depend on y , it proves that u ( x ) ∈ H 1 (Ω). Furthermore, � � ( ξ 0 ( x, y ) − ∇ u ( x )) · � ∀ � ψ with div y � ψ ( x, y ) dxdy = 0 ψ = 0 . Ω Y The orthogonal of divergence-free functions are exactly the gradients. Thus, there exists a unique function u 1 ( x, y ) in L 2 (Ω; H 1 # ( Y ) / R ) such that ξ 0 ( x, y ) = ∇ u ( x ) + ∇ y u 1 ( x, y ) .

  7. Homogenization of Schr¨ odinger equation 23 G. Allaire Theorem 4. Let u ǫ ∈ L 2 (Ω) two-scale converge to u 0 ( x, y ) ∈ L 2 (Ω × Y ). 1. Then, u ǫ converges weakly in L 2 (Ω) to u ( x ) = � Y u 0 ( x, y ) dy , and we have ǫ → 0 � u ǫ � 2 L 2 (Ω) ≥ � u 0 � 2 L 2 (Ω × Y ) ≥ � u � 2 lim L 2 (Ω) . 2. Assume further that u 0 ( x, y ) is smooth and that ǫ → 0 � u ǫ � 2 L 2 (Ω) = � u 0 � 2 lim L 2 (Ω × Y ) . Then, we have x, x 2 � � �� � u ǫ ( x ) − u 0 L 2 (Ω) → 0 . � � ǫ � Remark. In the last case we say that u ǫ two-scale converges strongly to u 0 .

  8. Homogenization of Schr¨ odinger equation 24 G. Allaire Proof of Theorem 4. Take a test function depending only on x � � � � lim u ǫ ( x ) ϕ ( x ) dx = u 0 ( x, y ) ϕ ( x ) dxdy = u ( x ) ϕ ( x ) dx. ǫ → 0 Ω Ω Ω Y Thus, u ǫ converges weakly to u in L 2 (Ω). Then, developing the inequality x, x 2 � � �� � � u ǫ ( x ) − ϕ dx ≥ 0 � � ǫ � Ω � � x, x � x, x � � � � | u ǫ ( x ) | 2 dx − 2 | 2 dx ≥ 0 u ǫ ( x ) ϕ dx + | ϕ ǫ ǫ Ω Ω Ω � � � � � | u ǫ ( x ) | 2 dx − 2 | ϕ ( x, y ) | 2 dx dy ≥ 0 lim inf u 0 ( x, y ) ϕ ( x, y ) dx dy + ǫ → 0 Ω Ω Y Ω Y Take ϕ = u 0 to get ǫ → 0 � u ǫ � 2 L 2 (Ω) ≥ � u 0 � 2 lim L 2 (Ω × Y ) .

  9. Homogenization of Schr¨ odinger equation 25 G. Allaire Proof of Theorem 4 (continued). If we assume ǫ → 0 � u ǫ � 2 L 2 (Ω) = � u 0 � 2 lim L 2 (Ω × Y ) , the same computation yields � x, x 2 � � � �� � | u 0 ( x, y ) − ϕ ( x, y ) | 2 dx dy lim inf � u ǫ ( x ) − ϕ dx = � � ǫ � ǫ → 0 Ω Ω Y If u 0 is smooth enough to be a test function ϕ (Carath´ eodory function), it gives the desired result x, x 2 � �� � � u ǫ ( x ) − u 0 L 2 (Ω) → 0 . � � ǫ �

  10. Homogenization of Schr¨ odinger equation 26 G. Allaire Theorem 5. 1. Let u ǫ be a bounded sequence in L 2 (Ω) such that ǫ ∇ u ǫ is also bounded in L 2 (Ω) N . Then, there exists a two-scale limit u 0 ( x, y ) ∈ L 2 (Ω; H 1 # ( Y ) / R ) such that, up to a subsequence, u ǫ two-scale converges to u 0 ( x, y ), and ǫ ∇ u ǫ to ∇ y u 0 ( x, y ). 2. Let u ǫ be a bounded sequence in L 2 (Ω) N such that div u ǫ is also bounded in L 2 (Ω). Then, there exists a two-scale limit u 0 ( x, y ) ∈ L 2 (Ω × Y ) N with div y u 0 = 0 and div x u 0 ∈ L 2 (Ω × Y ) such that, up to a subsequence, u ǫ two-scale converges to u 0 ( x, y ), and div u ǫ to div x u 0 ( x, y ).

  11. Homogenization of Schr¨ odinger equation 27 G. Allaire Proof of Theorem 5 (first part). We have x, x � � � � � lim u ǫ ( x ) ϕ dx = u 0 ( x, y ) ϕ ( x, y ) dxdy ǫ ǫ → 0 Ω Ω Y � x, x � � � � ǫ ∇ u ǫ ( x ) · � ξ 0 ( x, y ) · � lim ψ dx = ψ ( x, y ) dxdy ǫ ǫ → 0 Ω Ω Y By integration by parts x, x x, x � � � � � � � � ǫ ∇ u ǫ ( x ) · � div y � ψ + ǫ div x � ψ dx = − u ǫ ( x ) ψ dx ǫ ǫ Ω Ω Passing to the two-scale limit � � � � ξ 0 ( x, y ) · � u 0 ( x, y ) div y � ψ ( x, y ) dxdy = − ψ ( x, y ) dxdy Ω Ω Y Y which implies that ξ 0 ( x, y ) = ∇ y u 0 ( x, y ).

  12. Homogenization of Schr¨ odinger equation 28 G. Allaire -III- APPLICATION TO HOMOGENIZATION Conductivity or diffusion equation  x, x � � � � − div A ∇ u ǫ = f in Ω  ǫ u ǫ = 0 on ∂ Ω  with a coefficient tensor A ( x, y ) which is Y -periodic, uniformly coercive and bounded N α | ξ | 2 ≤ � A ij ( x, y ) ξ i ξ j ≤ β | ξ | 2 , ∀ ξ ∈ R N , ∀ y ∈ Y, ∀ x ∈ Ω ( β ≥ α > 0) . i,j =1 A priori estimate. If Ω is bounded, then � u ǫ � H 1 (Ω) ≤ C � f � L 2 (Ω) .

  13. Homogenization of Schr¨ odinger equation 29 G. Allaire ✞ ☎ A priori estimate ✝ ✆ Variational formulation � � x � � ∀ ϕ ∈ H 1 A ∇ u ǫ ( x ) · ∇ ϕ ( x ) dx = f ( x ) ϕ ( x ) dx, 0 (Ω) . ǫ Ω Ω Take ϕ = u ǫ and use coercivity � α �∇ u ǫ � 2 L 2 (Ω) ≤ f ( x ) u ǫ ( x ) dx ≤ � f � L 2 (Ω) � u ǫ � L 2 (Ω) Ω Poincar´ e inequality in Ω � u ǫ � L 2 (Ω) ≤ C (Ω) �∇ u ǫ � L 2 (Ω) Thus �∇ u ǫ � L 2 (Ω) ≤ C (Ω) � f � L 2 (Ω) α

  14. Homogenization of Schr¨ odinger equation 30 G. Allaire ✞ ☎ Two-scale convergence method ✝ ✆ First step. We deduce from the a priori estimates the precise form of the two-scale limit of the sequence u ǫ . By application of Theorem 2, there exist two functions, u ( x ) ∈ H 1 0 (Ω) and u 1 ( x, y ) ∈ L 2 (Ω; H 1 # ( Y ) / R ), such that, up to a subsequence, u ǫ two-scale converges to u ( x ), and ∇ u ǫ two-scale converges to ∇ x u ( x ) + ∇ y u 1 ( x, y ). x, x � � In view of these limits, u ǫ is expected to behave as u ( x ) + ǫu 1 . ǫ

  15. Homogenization of Schr¨ odinger equation 31 G. Allaire ✞ ☎ Two-scale convergence method ✝ ✆ Second step. We multiply the p.d.e. by a test function similar to the limit of x, x , where ϕ ( x ) ∈ D (Ω) and ϕ 1 ( x, y ) ∈ D (Ω; C ∞ � � u ǫ , namely ϕ ( x ) + ǫϕ 1 # ( Y )). ǫ This yields x, x x, x x, x � � � � � � � �� A ∇ u ǫ · ∇ ϕ ( x ) + ∇ y ϕ 1 + ǫ ∇ x ϕ 1 dx ǫ ǫ ǫ Ω � x, x � � �� = f ( x ) ϕ ( x ) + ǫϕ 1 dx. ǫ Ω Regarding A t � x, x � � � x, x �� ∇ ϕ ( x ) + ∇ y ϕ 1 as a test function for the two-scale ǫ ǫ convergence, we pass to the two-scale limit � � � A ( x, y ) ( ∇ u ( x ) + ∇ y u 1 ( x, y )) · ( ∇ ϕ ( x ) + ∇ y ϕ 1 ( x, y )) dxdy = f ( x ) ϕ ( x ) dx. Ω Y Ω

  16. Homogenization of Schr¨ odinger equation 32 G. Allaire ✞ ☎ Two-scale convergence method ✝ ✆ Third step. We read off a variational formulation for ( u, u 1 ). Take ( ϕ, ϕ 1 ) in 0 (Ω) × L 2 � � the Hilbert space H 1 Ω; H 1 # ( Y ) / R endowed with the norm � ( �∇ u ( x ) � 2 L 2 (Ω) + �∇ y u 1 ( x, y ) � 2 L 2 (Ω × Y ) ) The assumptions of the Lax-Milgram lemma are easily checked. The main point is the coercivity of the bilinear form defined by the left hand side � � A ( x, y ) ( ∇ ϕ ( x ) + ∇ y ϕ 1 ( x, y )) · ( ∇ ϕ ( x ) + ∇ y ϕ 1 ( x, y )) dxdy ≥ Ω Y � � � � � |∇ ϕ ( x )+ ∇ y ϕ 1 ( x, y ) | 2 dxdy = α |∇ ϕ ( x ) | 2 dx + α |∇ y ϕ 1 ( x, y ) | 2 dxdy. α Ω Ω Ω Y Y

  17. Homogenization of Schr¨ odinger equation 33 G. Allaire � � � A ( x, y ) ( ∇ u ( x ) + ∇ y u 1 ( x, y )) · ( ∇ ϕ ( x ) + ∇ y ϕ 1 ( x, y )) dxdy = f ( x ) ϕ ( x ) dx. Ω Y Ω By application of the Lax-Milgram lemma, there exists a unique solution 0 (Ω) × L 2 � � ( u, u 1 ) ∈ H 1 Ω; H 1 # ( Y ) / R . Consequently, the entire sequences u ǫ and ∇ u ǫ converge to u ( x ) and ∇ u ( x ) + ∇ y u 1 ( x, y ). An easy integration by parts shows that the associated p.d.e.’s are the so-called “two-scale homogenized problem”,  − div y ( A ( x, y ) ( ∇ u ( x ) + ∇ y u 1 ( x, y ))) = 0 in Ω × Y     �� �  − div x Y A ( x, y ) ( ∇ u ( x ) + ∇ y u 1 ( x, y )) dy = f ( x ) in Ω  y → u 1 ( x, y ) Y -periodic      u = 0 on ∂ Ω . 

  18. Homogenization of Schr¨ odinger equation 34 G. Allaire ✞ ☎ Two-scale convergence method ✝ ✆ Fourth (and optional) step. Eliminate the y variable and the u 1 unknown N ∂u � u 1 ( x, y ) = ( x ) w i ( x, y ) , ∂x i i =1 where w i ( x, y ) are the unique solutions in H 1 # ( Y ) / R of the cell problems  − div y ( A ( x, y ) ( � e i + ∇ y w i ( x, y ))) = 0 in Y  y → w i ( x, y ) Y -periodic,  at each point x ∈ Ω, and  − div x ( A ∗ ( x ) ∇ u ( x )) = f ( x ) in Ω  u = 0 on ∂ Ω ,  with A ∗ � ij ( x ) = Y A ( x, y ) ( � e i + ∇ y w i ( x, y )) · ( � e j + ∇ y w j ( x, y )) dy.

  19. Homogenization of Schr¨ odinger equation 35 G. Allaire -IV- BLOCH WAVES Theorem 1. For any function u ( y ) ∈ L 2 ( R N ) there exists a unique function u ( y, θ ) ∈ L 2 ( Y × Y ) such that ˆ � u ( y, θ ) e 2 iπθ · y dθ. u ( y ) = ˆ Y u ( y, θ ) is Y -periodic while the function θ → e 2 iπθ · y ˆ The function y → ˆ u ( y, θ ) is Y -periodic. Furthermore, the linear map B , called the Bloch transform and u , is an isometry from L 2 ( R N ) into L 2 ( Y × Y ), i.e. Parseval defined by B u = ˆ formula holds for any u, v ∈ L 2 ( R N ) � � � R N u ( y ) v ( y ) dy = u ( y, θ )ˆ ˆ v ( y, θ ) dy dθ. Y Y

  20. Homogenization of Schr¨ odinger equation 36 G. Allaire Proof. Let u ( y ) be a smooth compactly supported function in R N . Define � u ( y + k ) e − 2 iπθ · ( y + k ) . u ( y, θ ) = ˆ k ∈ Z N This sum is well defined because it has a finite number of terms since u has compact support. It is also clearly a Y -periodic function of y . On the other hand, for j ∈ Z N , we have u ( y + k ) e − 2 iπθ · ( y + k ) = e − 2 iπj · y ˆ u ( y, θ + j ) = e − 2 iπj · y � ˆ u ( y, θ ) . k ∈ Z N Thus, θ → e 2 iπθ · y ˆ u ( y, θ ) is Y -periodic. Next, we compute � � � u ( y, θ ) e 2 iπθ · y dθ = T N e − 2 iπθ · k dθ = u ( y ) T N ˆ u ( y + k ) k ∈ Z N since all integrals vanish except for k = 0. This proves the result for smooth compactly supported functions.

  21. Homogenization of Schr¨ odinger equation 37 G. Allaire In particular, it shows that the Bloch transform B is a linear map, well defined on C ∞ c ( R N ) and bounded on L 2 ( R N ). Since C ∞ c ( R N ) is dense in L 2 ( R N ), B can be extended by continuity and the result holds true in L 2 ( R N ).

  22. Homogenization of Schr¨ odinger equation 38 G. Allaire Lemma. Let a ( y ) ∈ L ∞ ( T N ) be a periodic function. For any u ( y ) ∈ L 2 ( R N ), we have B ( au ) = a B ( u ) ≡ a ( y )ˆ u ( y, θ ) . Remark. T N is the flat unit torus, i.e. T N ≡ Y + periodic B.C. Lemma. Let u ( y ) ∈ H 1 ( R N ). The Bloch transform of its gradient is B ( ∇ y u ) = ( ∇ y + 2 iπθ ) B ( u ) ≡ ∇ y ˆ u ( y, θ ) + 2 iπθ ˆ u ( y, θ ) u ( y, θ ) belongs to H 1 ( T N ). and y → B ( u ) ≡ ˆ

  23. Homogenization of Schr¨ odinger equation 39 G. Allaire ✞ ☎ Application ✝ ✆ Find u ∈ H 1 ( R N ) solution of � � in R N , − div y A ( y ) ∇ y u + c ( y ) u = f with f ∈ L 2 ( R N ). We assume that A ( y ) and c ( y ) belong to L ∞ ( T N ) and ∃ ν > 0 such that for a.e. y ∈ T N A ( y ) ξ · ξ ≥ ν | ξ | 2 for any ξ ∈ R N and c ( y ) ≥ c 0 > 0 . The variational formulation is to find u ∈ H 1 ( R N ) such that � � � � ∀ φ ∈ H 1 ( R N ) . A ( y ) ∇ y u · ∇ y φ + c ( y ) uφ dy = R N fφ dy R N

  24. Homogenization of Schr¨ odinger equation 40 G. Allaire Proposition. The p.d.e. in R N is equivalent to the family of p.d.e.’s, indexed by θ ∈ T N , � � in T N , − ( div y + 2 iπθ ) A ( y )( ∇ y + 2 iπθ ) B u + c ( y ) B u = B f which admits a unique solution y → ( B u )( y, θ ) ∈ H 1 ( T N ) for any θ ∈ T N . Proof. We apply the previous Lemmas � � � � ∀ φ ∈ H 1 ( R N ) A ( y ) ∇ y u · ∇ y φ + c ( y ) uφ dy = R N fφ dy R N � � � � � � u · ( ∇ y + 2 iπθ )ˆ u ˆ f ˆ ˆ A ( y )( ∇ y + 2 iπθ )ˆ φ + c ( y )ˆ φ dy dθ = φ dy dθ T N T N Y Y which is a variational formulation in y ∈ T N integrated with respect to θ which is just a parameter.

  25. Homogenization of Schr¨ odinger equation 41 G. Allaire For a given θ ∈ Y , consider the Green operator G θ  L 2 ( T N ) L 2 ( T N ) →  g ( y ) → G θ g ( y ) = v ( y )  where v ∈ H 1 ( T N ) is the unique solution of � � in T N . − ( div y + 2 iπθ ) A ( y )( ∇ y + 2 iπθ ) v + c ( y ) v = g One can check that G θ is a self-adjoint compact complex-valued linear operator acting on L 2 ( T N ). As such it admits a countable sequence of real increasing eigenvalues ( λ n ) n ≥ 1 (repeated with their multiplicity) and normalized eigenfunctions ( ψ n ) n ≥ 1 with � ψ n � L 2 ( T N ) = 1. The eigenvalues and eigenfunctions depend on the dual parameter or Bloch frequency θ which runs in the dual cell of Y , which is again Y .

  26. Homogenization of Schr¨ odinger equation 42 G. Allaire In other words, the eigenvalues and eigenfunctions satisfy the so-called Bloch (or shifted) spectral cell equation � � in T N . − ( div y + 2 iπθ ) A ( y )( ∇ y + 2 iπθ ) ψ n + c ( y ) ψ n = λ n ( θ ) ψ n θ ∈ Y is the Bloch frequency (or quasi momentum). A Bloch wave is φ n ( y ) = ψ n ( θ, y ) e 2 iπθ · y which satisfies in R N . − div y ( A ( y ) ∇ y φ n ) + c ( y ) φ n = λ ( θ ) φ n

  27. Homogenization of Schr¨ odinger equation 43 G. Allaire Theorem 2. For any u ( y ) ∈ L 2 ( R N ), ∃ ˆ u n ( θ ) ∈ L 2 ( T N ), n ≥ 1, such that � � u n ( θ ) ψ n ( y, θ ) e 2 iπθ · y dθ. u ( y ) = T N ˆ n ≥ 1 Furthermore, the linear map B , called the Bloch transform and defined by u n ) n ≥ 1 , is an isometry from L 2 ( R N ) into ℓ 2 L 2 ( T N ) � � B u = (ˆ , i.e. Parseval formula holds for any u, v ∈ L 2 ( R N ) � � � R N u ( y ) v ( y ) dy = u n ( θ )ˆ ˆ v n ( θ ) dθ. Y n ≥ 1 Proof. We decompose each ˆ u ( y, θ ) on the corresponding eigenbasis � � u ( y, θ ) = ˆ u n ( θ ) ψ n ( y, θ ) ˆ with ˆ u n ( θ ) = T N ˆ u ( y, θ ) ψ n ( y, θ ) dy. n ≥ 1 Commuting the sum with respect to n and the integral with respect to θ is a standard Fubini type result.

  28. Homogenization of Schr¨ odinger equation 44 G. Allaire ✞ ☎ Application ✝ ✆ � � in R N , − div y A ( y ) ∇ y u + c ( y ) u = f with f ∈ L 2 ( R N ). We obtain an explicit algebraic formula for the solution ˆ f n ( θ ) u n ( θ ) = ˆ ∀ n ≥ 1 , ∀ θ ∈ Y, λ n ( θ ) which is a generalization of a similar formula, using Fourier transform, for a constant coefficient p.d.e..

  29. Homogenization of Schr¨ odinger equation 45 G. Allaire ✞ ☎ Smoothness of the Bloch eigenvalues ✝ ✆ Lemma. θ → λ n ( θ ) is Lipschitz. Remark: for multiple eigenvalues θ → λ n ( θ ) is usually not smoother. Lemma (Kato, Rellich). If an eigenvalue λ n ( θ ) is simple at the value θ = θ n , then it remains simple in a small neighborhood of θ n and the n -th eigencouple is analytic in this neighborhood of θ n .

  30. Homogenization of Schr¨ odinger equation 46 G. Allaire Assumption: λ n ( θ n ) is a simple eigenvalue. � � Operator A n ( θ ) ψ = − ( div y + 2 iπθ ) A ( y )( ∇ y + 2 iπθ ) ψ + c ( y ) ψ − λ n ( θ ) ψ, Then, in a neighborhood of θ n , one can differentiate A n ( θ ) ∂ψ n = 2 iπe k A ( y )( ∇ y +2 iπθ ) ψ n +( div y +2 iπθ ) ( A ( y )2 iπe k ψ n )+ ∂λ n ( θ ) ψ n , ∂θ k ∂θ k and the second derivative is A n ( θ ) ∂ 2 ψ n � � = 2 iπe k A ( y )( ∇ y + 2 iπθ ) ∂ψ n ∂ψ n + ( div y + 2 iπθ ) A ( y )2 iπe k ∂θ k ∂θ l ∂θ l ∂θ l � � +2 iπe l A ( y )( ∇ y + 2 iπθ ) ∂ψ n ∂ψ n + ( div y + 2 iπθ ) A ( y )2 iπe l ∂θ k ∂θ k + ∂λ n ( θ ) ∂ψ n + ∂λ n ( θ ) ∂ψ n ∂θ k ∂θ l ∂θ l ∂θ k − 4 π 2 e k A ( y ) e l ψ n − 4 π 2 e l A ( y ) e k ψ n + ∂ 2 λ n ( θ ) ψ n ∂θ l ∂θ k

  31. Homogenization of Schr¨ odinger equation 47 G. Allaire -V- SCHR¨ ODINGER EQUATION Schr¨ odinger equation in a periodic medium: i∂u ǫ � x � x x, x  � � � � � � �� in R N × R + ǫ − 2 c ∂t − div A ∇ u ǫ + + d u ǫ = 0   ǫ ǫ ǫ  u ǫ ( t = 0 , x ) = u 0 in R N , ǫ ( x )  Complex-valued unknown: u ǫ ( t, x ) : R + × R N → C (0 , 1) N -periodic, real, measurable and bounded. ☞ y → A ( y ) , c ( y ) , d ( x, y ) ☞ A is a N × N symmetric, uniformly coercive, tensor. ☞ c and d are scalar functions with no sign. eodory function, u 0 ǫ ∈ H 1 ( R N ). ☞ d ( x, y ) is a Carath´

  32. Homogenization of Schr¨ odinger equation 48 G. Allaire Physical motivation: ☞ Solid state physics: one-electron model in a periodic crystal. ☞ c ( y ) is the crystal potential and d ( x, y ) the (small) exterior potential. Other possible equation: i∂u ǫ � x  � in R N × R + ∂t − ( div + iǫ A ǫ ) ( ∇ + iǫ A ǫ ) u ǫ + ǫ − 2 c u ǫ = 0   ǫ u ǫ ( t = 0 , x ) = u 0  in R N , ǫ ( x )  t, x, x � � where A ǫ = A is the electromagnetic vector potential such that the ǫ electric field E and magnetic field B are E = − ∂ A ǫ and B = curl A ǫ . ∂t ✗ Periodic homogenization: ǫ → 0 is the period. ✗ Singular perturbation: potential of order ǫ − 2 .

  33. Homogenization of Schr¨ odinger equation 49 G. Allaire ✞ ☎ SCALING ✝ ✆ ✗ This is not the scaling of semi-classical analysis: i ∂u ǫ � x � x x, x � � � � � � �� ǫ − 2 c ∂t − div A ∇ u ǫ + + d u ǫ = 0 ǫ ǫ ǫ ǫ ✗ This is a parabolic scaling (for longer times). ✗ Scaling of a long time asymptotic: change of variables y = x/ǫ and τ = t/ǫ 2 ⇒ cells of size 1, no more oscillations i∂u ǫ � � c ( y ) + ǫ 2 d ( ǫy, y ) ∂τ − div y ( A ( y ) ∇ y u ǫ ) + u ǫ = 0 ⇒ small and slowly varying exterior potential. Goal: find homogenized models, justify the notion of electron effective mass.

  34. Homogenization of Schr¨ odinger equation 50 G. Allaire ✞ ☎ A priori estimates ✝ ✆ For any final time T > 0, there exists a constant C > 0 that does not depend on ǫ such that � u 0 � u ǫ � L ∞ ((0 ,T ); L 2 ( R N )) = ǫ � L 2 ( R N ) , � u 0 ǫ � L 2 ( R N ) + ǫ �∇ u 0 � � ǫ �∇ u ǫ � L ∞ ((0 ,T ); L 2 ( R N ) N ) ≤ C ǫ � L 2 ( R N ) N . Proof. Multiply the equation by u ǫ and by ∂u ǫ ∂t , integrate by parts and take the real part. No strong convergence a priori.

  35. Homogenization of Schr¨ odinger equation 51 G. Allaire A FIRST SIMPLE RESULT We use a trick of Vanninathan (81’), Kozlov (84’), A.-Malige (97’). Introduce the spectral cell problem for θ = 0 in the unit torus T N . − div y ( A ( y ) ∇ y ψ n ) + c ( y ) ψ n = λ n ψ n First eigenvalue λ 1 is simple and first eigenfunction ψ 1 ( y ) > 0 is positive by Krein-Rutman theorem (maximum principle). Interpretation of ψ 1 : periodic ground state. ǫ 2 u ǫ ( t, x ) Change of unknowns: v ǫ ( t, x ) = e − i λ 1 t ψ 1 ( x ǫ ) Algebraic trick: ψ 2 � � ψ 1 div ( A ∇ ( ψ 1 v )) = ψ 1 v div ( A ∇ ψ 1 ) + div 1 A ∇ v

  36. Homogenization of Schr¨ odinger equation 52 G. Allaire A simpler equation for v ǫ : � ∂v ǫ i | ψ 1 | 2 � x � x x, x  � � � � � in R N × R + ( | ψ 1 | 2 A ) + ( | ψ 1 | 2 d ) ∂t − div ∇ v ǫ v ǫ = 0   ǫ ǫ ǫ u 0 ǫ ( x ) in R N . v ǫ ( t = 0 , x ) =   ψ 1 ( x ǫ ) Theorem. (Standard periodic homogenization) � x If u 0 ǫ ( x ) = v 0 ( x ) ψ 1 � , then v ǫ , converges weakly in L 2 � (0 , T ); H 1 ( R N ) � to the ǫ solution v of the homogenized problem  i∂v in R N × (0 , T ) ∂t − div ( A ∗ ∇ v ) + d ∗ ( x ) v = 0   v ( t = 0 , x ) = v 0 ( x ) in R N ,   T N | ψ 1 | 2 ( y ) d ( x, y ) dy and A ∗ is the “usual” homogenized tensor where d ∗ ( x ) = � for | ψ 1 ( y ) | 2 A ( y ).

  37. Homogenization of Schr¨ odinger equation 53 G. Allaire ✞ ☎ INTERPRETATION ✝ ✆ Convergence result: � x u ǫ ( t, x ) ≈ e i λ 1 t � ǫ 2 ψ 1 v ( t, x ) ǫ ☞ It is crucial that ψ 1 ( y ) > 0 (maximum principle). ☞ This trick is called factorization principle. ☞ Equivalent results for parabolic or hyperbolic equations, transport equation (A.-Bal, A.-Capdeboscq ...). � x u 0 ǫ ( x ) converges weakly to v 0 ( x ) in L 2 ( R N ). ☞ Still true if ψ 1 � ǫ What happens if the weak limit is v 0 ≡ 0 ?

  38. Homogenization of Schr¨ odinger equation 54 G. Allaire WKB METHOD A different kind of ansatz. Geometric optics or WKB method (Wentzel, Kramers, Brillouin). i ∂u ǫ x, x + 1 x, x  � � � � � � in R N × (0 , T ) , ∂t − div A ∇ u ǫ ǫ 2 c u ǫ = 0  ǫ ǫ ǫ u ǫ ( t = 0 , x ) = u 0 in R N ǫ ( x )  ☞ This is precisely the scaling of semi-classical analysis. ☞ Short time scaling. ☞ A is symmetric and uniformly coercive. ☞ Formal method. For rigorous analysis, see: Buslaev, Guillot-Ralston, G´ erard-Martinez-Sjostrand, G´ erard-Markowich-Mauser-Poupaud, Panati-Sohn-Teufel...

  39. Homogenization of Schr¨ odinger equation 55 G. Allaire ☞ Introduce the operator � � A ( x, θ ) ψ ≡ − ( div y + 2 iπθ ) A ( x, y )( ∇ y + 2 iπθ ) ψ + c ( x, y ) ψ ☞ Eigenvalues λ n ( x, θ ) and eigenfunctions ψ n ( x, y, θ ). ☞ Choose an energy level n such that λ n ( x, θ ) is simple ∀ θ ∈ T N , ∀ x ∈ R N . ☞ Replace θ par ∇ S 0 and consider an initial data with oscillating phase x, x ǫ ( x ) = e 2 iπ S 0( x ) � � u 0 u 0 ( x ) ψ n ǫ , ∇ S 0 ( x ) ǫ

  40. Homogenization of Schr¨ odinger equation 56 G. Allaire ✞ ☎ High frequency asymptotic expansion or WKB ansatz ✝ ✆ t, x, x t, x, x u ǫ ( t, x ) = e 2 iπ S ( t,x ) � � � � � � v + ǫv 1 + ... ǫ ǫ ǫ The first derivatives are � � ǫ∂u ǫ 2 iπ ( v + ǫv 1 ) ∂S ∂t + ǫ∂v ∂t = e 2 iπ S ( t,x ) ∂t + O ( ǫ 2 ) ǫ � � ǫ ∇ u ǫ = e 2 iπ S ( t,x ) 2 iπ ( v + ǫv 1 ) ∇ S + ∇ y v + ǫ ( ∇ x v + ∇ y v 1 ) + O ( ǫ 2 ) ǫ We compute also the second derivatives, plug the ansatz in the p.d.e. and deduce a cascade of equations.

  41. Homogenization of Schr¨ odinger equation 57 G. Allaire ✞ ☎ Cascade of equations ✝ ✆ Order ǫ − 2 : A ( x, ∇ S ) v = 2 π ∂S T N . ∂t v in This is a spectral problem, y being the space variable and ( t, x ) being fixed parameters. Thus, we deduce 2 π ∂S ∂t = λ n ( x, ∇ S ) and by simplicity of the eigenvalue v ( t, x, y ) = u ( t, x ) ψ n ( x, y, ∇ S ( t, x )) . We have obtained an eikonal equation (Hamilton-Jacobi) to compute the phase with the initial data S (0 , x ) = S 0 ( x ).

  42. Homogenization of Schr¨ odinger equation 58 G. Allaire Order ǫ − 1 : T N , A ( x, ∇ S ) v 1 = λ n ( x, ∇ S ) v 1 + f in with f = − i∂v � � � � ∂t + div y + 2 iπ ∇ S ( A ∇ x v ) + div x A ( ∇ y + 2 iπ ∇ S ) v . To solve for v 1 the Fredholm alternative requires that � T N f ( t, x, y ) ψ n ( x, y, ∇ S ) dy = 0 . Recall that v ( t, x, y ) = u ( t, x ) ψ n ( x, y, ∇ S ) and Fredholm alternative for ∇ θ ψ n � −∇ x u ·∇ θ λ n = 2 iπ T N [( div y + 2 iπθ ) ( A ( y ) ∇ x uψ n ) + A ( y )( ∇ y + 2 iπθ ) ψ n · ∇ x u ] dy We deduce an homogenized transport equation ∂u ∂t − ∇ θ λ n ( ∇ S ) · ∇ x u + b ∗ u = 0 2 π

  43. Homogenization of Schr¨ odinger equation 59 G. Allaire ✄ � Reminder on Bloch waves ✂ ✁ ✖ Bloch eigenvalue λ n ( x, θ ) and eigenvector ψ n ( x, y, θ ) ✖ Assumption: λ n ( θ ) is a simple eigenvalue. ✖ Operator � � A n ( x, θ ) ψ = − ( div y + 2 iπθ ) A ( x, y )( ∇ y + 2 iπθ ) ψ + c ( x, y ) ψ − λ n ( x, θ ) ψ, ✖ Bloch spectral problem A n ( x, θ ) ψ n = 0 ✖ We differentiate with respect to θ A n ( x, θ ) ∂ψ n = 2 iπe k A ( ∇ y + 2 iπθ ) ψ n + ( div y + 2 iπθ ) ( A 2 iπe k ψ n ) + ∂λ n ψ n , ∂θ k ∂θ k ✖ Fredholm alternative: the r.h.s. is orthogonal to ψ n .

  44. Homogenization of Schr¨ odinger equation 60 G. Allaire ✘ Group velocity V = ∇ θ λ n ( ∇ S ) 2 π ✘ If we write v ( t, x, y ) = u ( t, x, θ ) ψ n ( x, y, θ ) with θ = ∇ S , then we deduce an homogenized Liouville equation in the phase space ∂ | u | 2 − V · ∇ x | u | 2 + ∇ x λ n · ∇ θ | u | 2 = 0 ∂t

  45. Homogenization of Schr¨ odinger equation 61 G. Allaire ✄ � Conclusion ✂ ✁ x, x � � u ǫ ( t, x ) ≈ e 2 iπ S ( t,x ) ψ n ǫ , ∇ S ( t, x ) u ( t, x, ∇ S ( t, x )) ǫ The semi-classical limit is given by the dynamic of the following Hamiltonian system in the phase space ( x, θ ) ∈ R N × T N  1 x = ˙ 2 π ∇ θ λ n ( x, θ )  ˙ θ = −∇ x λ n ( x, θ )  ☞ Phase S solution of an eikonal equation. ☞ Amplitude | u | 2 solution of a transport equation in the phase space. ☞ Valid up to caustics. ☞ Rigorous version by using semi-classical or Wigner measures. ☞ WKB ansatz are useful for computations too.

  46. Homogenization of Schr¨ odinger equation 62 G. Allaire ✞ ☎ Special case ✝ ✆ Monochromatic initial data. Periodic coefficients. Assume S 0 ( x ) = θ · x and A ( x, y ) ≡ A ( y ), c ( x, y ) ≡ c ( y ). Then the explicit solution of the eikonal equation is S ( t, x ) = θ · x + 2 πλ n ( θ ) t Furthermore V is constant, b ∗ = 0 and ∇ x λ n ( θ ) = 0, thus u ( t, x ) = u 0 ( x + V t ) In such a simpler case we can find a better ”long time” ansatz of the solution.

  47. Homogenization of Schr¨ odinger equation 63 G. Allaire -VI- HOMOGENIZATION We consider a monochromatic wave packet as initial data � x e 2 iπ θn · x ǫ , θ n � v 0 ∈ H 1 ( R N ) . u 0 ǫ v 0 ( x ) ǫ ( x ) = ψ n with Assumption: the eigenvalue λ n ( θ n ) is simple. ✗ We replace the maximum principle by Bloch wave theory. ✗ Simplicity is a generic assumption. ✗ Other initial data are possible (up to extracting a weakly two-scale converging subsequence).

  48. Homogenization of Schr¨ odinger equation 64 G. Allaire For θ ∈ Y the Bloch (or shifted) spectral cell equation is � � in T N − ( div y + 2 iπθ ) A ( y )( ∇ y + 2 iπθ ) ψ n + c ( y ) ψ n = λ n ( θ ) ψ n Schr¨ odinger equation in a periodic medium: i∂u ǫ � x � x x, x  � � � � � � �� in R N × R + ǫ − 2 c ∂t − div A ∇ u ǫ + + d u ǫ = 0   ǫ ǫ ǫ u ǫ ( t = 0 , x ) = u 0  in R N , ǫ ( x ) 

  49. Homogenization of Schr¨ odinger equation 65 G. Allaire Theorem 1. Assume further that the group velocity vanishes ∇ θ λ n ( θ n ) = 0 . � x u ǫ ( t, x ) = e i λn ( θn ) t e 2 iπ θn · x ǫ , θ n � ǫ ψ n Then v ( t, x ) + r ǫ ( t, x ) with ǫ 2 � R N | r ǫ ( t, x ) | 2 dx = 0 , ǫ → 0 sup lim t ∈ [0 ,T ] (0 , T ); L 2 ( R N ) � � and v ∈ C is the unique solution of the homogenized Schr¨ odinger equation  i∂v in R N × (0 , T ) ∂t − div ( A ∗ n ∇ v ) + d ∗ n ( x ) v = 0   v ( t = 0 , x ) = v 0 ( x ) in R N ,   1 � T N d ( x, y ) | ψ n ( y ) | 2 dy . with A ∗ 8 π 2 ∇ θ ∇ θ λ n ( θ n ) and d ∗ n = n ( x ) =

  50. Homogenization of Schr¨ odinger equation 66 G. Allaire ✞ ☎ REMARKS ✝ ✆ ☞ The inverse of A ∗ n is called the effective mass (a well-known concept in solid state physics). ☞ The effective mass can be negative or infinite ! ☞ Previous work on effective mass: Bensoussan-Lions-Papanicolaou, Poupaud-Ringhofer. ☞ The homogenized coefficients do depend on the initial data ! It does not fit in the framework of G - or H -convergence.

  51. Homogenization of Schr¨ odinger equation 67 G. Allaire | x |→ + ∞ d ( x, y ) = d ∞ ( y ) uniformly in T N . Define the Theorem 2. Assume lim group velocity or drift V = 1 2 π ∇ θ λ n ( θ n ) ∈ R N . � � � x t, x + V u ǫ ( t, x ) = e i λn ( θn ) t e 2 iπ θn · x ǫ , θ n � ǫ ψ n Then v ǫ t + r ǫ ( t, x ) with ǫ 2 � T � R N | r ǫ ( t, x ) | 2 dxdt = 0 , where v ∈ C (0 , T ); L 2 ( R N ) � � lim is the unique ǫ → 0 0 solution of the homogenized Schr¨ odinger equation  i∂v in R N × (0 , T ) ∂t − div ( A ∗ n ∇ v ) + d ∗ n v = 0   v ( t = 0 , x ) = v 0 ( x ) in R N ,   1 � T N d ∞ ( y ) | ψ n ( y ) | 2 dy . with A ∗ 8 π 2 ∇ θ ∇ θ λ n ( θ n ) and d ∗ n = n =

  52. Homogenization of Schr¨ odinger equation 68 G. Allaire ✞ ☎ Generalization for a multiple eigenvalue ✝ ✆ What happens if λ n ( θ n ) is not simple ? In general, if λ n ( θ n ) is of multiplicity p > 1, we expect an homogenized system of p equations. Assume that λ n ( θ n ) = λ n +1 ( θ n ) is of multiplicity 2 and that, up to a convenient relabelling, λ n ( θ ) and λ n +1 ( θ ) are smooth branches of eigenvalues (and eigenfunctions). (Very strong assumption !) We can prove that the homogenized system is  i∂v 1 in R N × R + ∂t − div ( A ∗ n ∇ v 1 ) + d ∗ 11 ( x ) v 1 + d ∗ 12 ( x ) v 2 = 0       i∂v 2 in R N × R + A ∗ + d ∗ 21 ( x ) v 1 + d ∗ � � ∂t − div n +1 ∇ v 2 22 ( x ) v 2 = 0     ( v 1 , v 2 )( t = 0 , x ) = ( v 0 1 , v 0 in R N . 2 )( x )  

  53. Homogenization of Schr¨ odinger equation 69 G. Allaire ✞ ☎ Formal proof of Theorem 1 ✝ ✆ We make an ansatz for the solution + ∞ t, x, x u ǫ ( t, x ) = e i λn ( θn ) t e 2 iπ θn · x � � � ǫ i u i ǫ 2 ǫ ǫ i =0 where the oscillating phase is deduced from WKB. We recall the operator � � A n ( θ ) ψ ≡ − ( div y + 2 iπθ ) A ( y )( ∇ y + 2 iπθ ) ψ + c ( y ) ψ − λ n ( θ ) ψ We plug the ansatz in the equation and get a cascade of equations.

  54. Homogenization of Schr¨ odinger equation 70 G. Allaire ✞ ☎ Cascade of equations ✝ ✆ Order ǫ − 2 : A n ( θ n ) u 0 ( t, x, y ) = 0 from which we deduce, by simplicity of λ n ( θ n ), that u 0 ( t, x, y ) ≡ v ( t, x ) ψ n ( y, θ n ) . Order ǫ − 1 : A n ( θ n ) u 1 ( t, x, y ) = div x ( A ( y )( ∇ y + 2 iπθ n ) ψ n v ) + ( div y + 2 iπθ n ) ( A ( y ) ∇ x vψ n ) from which we deduce (up to the addition of a multiple of ψ n ) N 1 ∂v ( t, x ) ∂ψ n � ( y, θ n ) u 1 ( t, x, y ) ≡ 2 iπ ∂x k ∂θ k k =1

  55. Homogenization of Schr¨ odinger equation 71 G. Allaire Order ǫ 0 : A n ( θ n ) u 2 ( t, x, y ) = f from which we deduce that N ∂ 2 v ( t, x ) ∂ 2 ψ n u 2 ( t, x, y ) ≡ − 1 � 4 π 2 ∂x k ∂x l ∂θ k ∂θ l k,l =1 and, more important, by the Fredholm alternative, � T N f ( t, x, y ) ψ n ( t, x, y ) dy = 0 . This last condition yields the homogenized equation.

  56. Homogenization of Schr¨ odinger equation 72 G. Allaire ✞ ☎ Proof of Theorem 1 ✝ ✆ It is made of 3 steps 1. Deriving the spectral cell problem. 2. Deriving the homogenized equation. 3. Strong convergence. Main tools: Bloch wave decomposition, two-scale convergence.

  57. Homogenization of Schr¨ odinger equation 73 G. Allaire ✞ ☎ STEP 1. SPECTRAL CELL PROBLEM ✝ ✆ We apply two-scale convergence to the bounded sequence v ǫ defined by v ǫ ( t, x ) = u ǫ ( t, x ) e − i λn ( θn ) t e − 2 iπ θn · x ǫ , ǫ 2 which admits a two-scale limit v ∗ ( t, x, y ) ∈ L 2 � (0 , T ) × R N ; H 1 ( T N ) � . We multiply the Schr¨ odinger equation by the complex conjugate of ϕ ǫ ≡ ǫ 2 φ ( t, x, x ǫ ) e i λn ( θn ) t e 2 iπ θn · x ǫ 2 ǫ

  58. Homogenization of Schr¨ odinger equation 74 G. Allaire Variational formulation � T � i∂u ǫ � � ∂t ϕ ǫ + A ǫ ∇ u ǫ · ∇ ϕ ǫ + ( ǫ − 2 c ǫ + d ǫ ) u ǫ ϕ ǫ dt dx = 0 . R N 0 Replace u ǫ by v ǫ and ϕ ǫ by ǫ 2 φ ǫ � T � ǫ + ( c ǫ − λ n ( θ n )) v ǫ φ � ǫ � A ǫ ( ǫ ∇ + 2 iπθ n ) v ǫ · ( ǫ ∇ − 2 iπθ n ) φ dt dx = O ( ǫ 2 ) . R N 0 Passing to the two-scale limit yields the variational formulation of � A ( y )( ∇ y + 2 iπθ n ) v ∗ � + c ( y ) v ∗ = λ n ( θ n ) v ∗ − ( div y + 2 iπθ n ) in T N . Since λ n ( θ n ) is simple, there exists a scalar function v ( t, x ) ∈ L 2 ((0 , T ) × Ω) such that v ∗ ( t, x, y ) = v ( t, x ) ψ n ( y, θ n ) .

  59. Homogenization of Schr¨ odinger equation 75 G. Allaire ✞ ☎ STEP 2. HOMOGENIZED PROBLEM ✝ ✆ We multiply the Schr¨ odinger equation by the complex conjugate of � � N ψ n ( x ∂φ ( t, x ) ζ k ( x Ψ ǫ = e i λn ( θn ) t e 2 iπ θn · x � ǫ , θ n ) φ ( t, x ) + ǫ ǫ ) ǫ 2 ǫ ∂x k k =1 where ζ k ( y ) is the solution of A ( θ n ) ζ k = e k A ( y )( ∇ y + 2 iπθ n ) ψ n + ( div y + 2 iπθ n ) ( A ( y ) e k ψ n ) in T N with the operator A ( θ ) defined on L 2 ( T N ) by � � A ( θ n ) ψ = − ( div y + 2 iπθ n ) A ( y )( ∇ y + 2 iπθ n ) ψ + c ( y ) ψ − λ n ( θ n ) ψ The existence of ζ k is guaranteed because ∂ψ n ∇ θ λ n ( θ n ) = 0 = 2 iπζ k since ∂θ k

  60. Homogenization of Schr¨ odinger equation 76 G. Allaire ✞ ☎ Everything you always wanted to know about the proof but were afraid to ask ✝ ✆ ☞ We integrate by parts and put all derivatives on the test function. ☞ The ǫ − 2 terms cancel out because of the equation for ψ n . ☞ The ǫ − 1 terms cancel out because of the equation for ζ k . ☞ We pass to the two-scale limit in the ǫ 0 terms. ☞ We obtain a very weak form of the homogenized equation. 1 ☞ The homogenized tensor A ∗ 8 π 2 ∇ θ ∇ θ λ n ( θ n ) because of the n is equal to ∂ 2 ψ n compatibility condition (Fredholm alternative) for ∂θ k ∂θ l .

  61. Homogenization of Schr¨ odinger equation 77 G. Allaire R N A ǫ ( ∇ + 2 iπ θ n ǫ )( φv ǫ ) · ( ∇ − 2 iπ θ n � � ǫ R N A ǫ ∇ u ǫ · ∇ Ψ ǫ dx = ǫ ) ψ n R N A ǫ ( ∇ + 2 iπ θ n v ǫ ) · ( ∇ − 2 iπ θ n ǫ )( ∂φ � ǫ + ǫ ǫ ) ζ k ∂x k v ǫ · ( ∇ − 2 iπ θ n � ∂φ ǫ R N A ǫ e k − ǫ ) ψ n ∂x k R N A ǫ ( ∇ + 2 iπ θ n ǫ )( ∂φ � ǫ + v ǫ ) · e k ψ n ∂x k � R N A ǫ v ǫ ∇ ∂φ � R N A ǫ v ǫ ∇ ∂φ ǫ ǫ · ( ǫ ∇ − 2 iπθ n ) ζ − · e k ψ n − k ∂x k ∂x k k ( ǫ ∇ + 2 iπθ n ) v ǫ · ∇ ∂φ � ǫ R N A ǫ ζ + ∂x k

  62. Homogenization of Schr¨ odinger equation 78 G. Allaire � x � Variational formulation for ψ n ǫ R N A ǫ ( ∇ + 2 iπ θ n n · ( ∇ − 2 iπ θ n � ǫ )Φ + 1 � R N ( c ǫ − λ n ( θ n )) ψ ǫ ǫ ) ψ ǫ n Φ = 0 ǫ 2 Take Φ = φv ǫ ⇒ cancellation of the ǫ − 2 terms

  63. Homogenization of Schr¨ odinger equation 79 G. Allaire � x � Variational formulation for ζ k ǫ R N A ǫ ( ∇ + 2 iπ θ n k · ( ∇ − 2 iπ θ n � ǫ )Φ + 1 � R N ( c ǫ − λ n ( θ n )) ζ ǫ ǫ ) ζ ǫ k Φ = ǫ 2 R N A ǫ ( ∇ + 2 iπ θ n n · ( ∇ − 2 iπ θ n � � ǫ − 1 n · e k Φ − ǫ − 1 ǫ ) ψ ǫ R N A ǫ e k ψ ǫ ǫ )Φ . ∂x k v ǫ ⇒ cancellation of the ǫ − 1 terms ∂φ Take Φ =

  64. Homogenization of Schr¨ odinger equation 80 G. Allaire ✞ ☎ STEP 3. STRONG CONVERGENCE ✝ ✆ This is a consequence of the energy conservation � v ǫ ( t ) � L 2 ( R N ) = � u ǫ ( t ) � L 2 ( R N ) = � u 0 ǫ � L 2 ( R N ) → � ψ n v 0 � L 2 ( R N × T N ) = � v 0 � L 2 ( R N ) and of the notion of strong two-scale convergence. Recall that � x e 2 iπ θn · x ǫ , θ n � u 0 ǫ v 0 ( x ) ǫ ( x ) = ψ n

  65. Homogenization of Schr¨ odinger equation 81 G. Allaire ✞ ☎ Proof of Theorem 2 ✝ ✆ New ingredient: two-scale convergence with drift. Proposition (Marusic-Paloka, Piatnitski). Let V ∈ R N be a given drift velocity. Let u ǫ be a bounded sequence in L 2 ((0 , T ) × R N ). Up to a subsequence, there exist a limit u 0 ( t, x, y ) ∈ L 2 ((0 , T ) × R N × T N ) such that u ǫ two-scale converges with drift weakly to u 0 in the sense that � T � � � t, x + V ǫ t, x lim R N u ǫ ( t, x ) φ dt dx = ǫ ǫ → 0 0 � T � � T N u 0 ( t, x, y ) φ ( t, x, y ) dt dx dy 0 R N for all functions φ ( t, x, y ) ∈ L 2 � (0 , T ) × R N ; C ( T N ) � .

  66. Homogenization of Schr¨ odinger equation 82 G. Allaire Lemma (Marusic-Paloka, Piatnitski). Let φ ( t, x, y ) ∈ L 2 � (0 , T ) × R N ; C ( T N ) � . Then � T � T 2 � �� � t, x + V ǫ t, x � � � � � T N | φ ( t, x, y ) | 2 dt dx dy. lim � φ dt dx = � � ǫ ǫ → 0 � R N R N 0 0 Proof. Change of variables x ′ = x + V ǫ t � T � T 2 2 t, x ′ , x ′ � �� � �� � � � t, x + V ǫ t, x � ǫ − V dt dx ′ � � � � � φ dt dx = � φ ǫ 2 t � � � � ǫ � � 0 R N 0 R N We mesh R N with cubes of size ǫ , R N = ∪ i ∈ Z Y ǫ i with Y ǫ i = x ǫ i + (0 , ǫ ) N 2 2 t, x ′ , x ′ i , x ′ � �� � �� � ǫ − V � ǫ − V � � � � � � t, x ǫ � � φ ǫ 2 t dx = � φ ǫ 2 t dx + O ( ǫ ) � � � � � Y ǫ � R N i i � � � i , y ) | 2 dy + O ( ǫ ) = | φ ( x, y ) | 2 dx dy + O ( ǫ ) � ǫ N T N | φ ( x ǫ = Ω Y i ∈ Z

  67. Homogenization of Schr¨ odinger equation 83 G. Allaire -VII- LOCALIZATION We come back to the semi-classical scaling and to locally periodic coefficients i ∂u ǫ x, x x, x � � � � � � + ǫ − 2 c ∂t − div A ∇ u ǫ u ǫ = 0 ǫ ǫ ǫ We choose well-prepared initial data, Bloch wave packets.

  68. Homogenization of Schr¨ odinger equation 84 G. Allaire ✞ ☎ ASSUMPTIONS ✝ ✆ We choose a point ( x n , θ n ) ∈ R N × T N in the phase space such that λ n ( x n , θ n ) is a simple eigenvalue and ∇ θ λ n ( x n , θ n ) = ∇ x λ n ( x n , θ n ) = 0 We consider well-prepared initial data ǫ v 0 � x − x n x n , x e 2 iπ θn · x � ǫ , θ n � � u 0 ǫ ( x ) = ψ n √ ǫ with v 0 ∈ H 1 ( R N ) (degenerate case for WKB !) Notations. New scale z = x − x n √ ǫ

  69. Homogenization of Schr¨ odinger equation 85 G. Allaire ✞ ☎ Main result ✝ ✆ Theorem (A.-Palombaro). t, x − x n t, x − x n x n , x u ǫ ( t, x ) = e i λn ( xn,θn ) t e 2 iπ θn · x � ǫ , θ n � � � � � ǫ ψ n √ ǫ √ ǫ v + r ǫ ǫ � R N | r ǫ ( t, z ) | 2 dz = 0 , uniformly in time, and v ( t, z ) is the unique with lim ǫ → 0 solution of the homogenized Schr¨ odinger equation  i∂v in R N × R + ∂t − div z ( A ∗ ∇ z v ) + div z ( vB ∗ z ) + c ∗ v + vD ∗ z · z = 0   v (0 , z ) = v 0 ( z ) in R N   where c ∗ is a constant coefficient and A ∗ , B ∗ , D ∗ are constant matrices defined by 1 2 iπ ∇ θ ∇ x λ n ( x n , θ n ) , D ∗ = 1 1 A ∗ = 8 π 2 ∇ θ ∇ θ λ n ( x n , θ n ) , B ∗ = 2 ∇ x ∇ x λ n ( x n , θ n ) .

  70. Homogenization of Schr¨ odinger equation 86 G. Allaire ✞ ☎ Homogenized problem ✝ ✆  i∂v in R N × R + ∂t − div z ( A ∗ ∇ z v ) + div z ( vB ∗ z ) + c ∗ v + vD ∗ z · z = 0   v (0 , z ) = v 0 ( z ) in R N   Lemma. The operator A ∗ : L 2 ( R N ) → L 2 ( R N ) defined by A ∗ ϕ = − div ( A ∗ ∇ ϕ ) + div( ϕB ∗ z ) + c ∗ ϕ + ϕD ∗ z · z is self-adjoint. Corollary. The homogenized Schr¨ odinger equation is well-posed in C ( R + ; L 2 ( R N )) and satisfies the energy conservation ∀ t ∈ R + . || v ( t, · ) || L 2 ( R N ) = || v 0 || L 2 ( R N )

  71. Homogenization of Schr¨ odinger equation 87 G. Allaire Proof of the corollary. By self-adjointness � R N A ∗ vv dz = �A ∗ v, v � = � v, A ∗ v � = �A ∗ v, v � ∈ R . � ∂v � R N A ∗ vv dz = 0 i ∂t v dz + R N Take the imaginary part to get 1 d � R N | v | 2 dz = 0 2 dt

  72. Homogenization of Schr¨ odinger equation 88 G. Allaire Proof of the lemma. By integration by parts and since B ∗ ∈ i R , B ∗ = − B ∗ � div( vB ∗ z ) w − 1 � div( wB ∗ z ) v − 1 � � � � 2tr B ∗ vw 2tr B ∗ wv dz = dz R N R N Thus � � � � A ∗ ∇ v · ∇ w + D ∗ z · z vw + div( vB ∗ z ) w − 1 R N A ∗ vw dz = 2tr B ∗ vw dz R N � � 1 2tr B ∗ + c ∗ � + vw dz R N which is symmetric (obvious for the blue terms) since 1 2 i tr B ∗ + Im c ∗ = 0 ∂ 2 ψ n as a consequence of the Fredholm alternative for ∂z k ∂θ l .

  73. Homogenization of Schr¨ odinger equation 89 G. Allaire ✞ ☎ Compactness and localization ✝ ✆    ∇ x ∇ x λ n ∇ θ ∇ x λ n  ( x n , θ n ) . ∇∇ λ n = ∇ θ ∇ x λ n ∇ θ ∇ θ λ n Lemma. If the matrix ∇∇ λ n is positive definite, then there exists an orthonormal basis { ϕ n } n ≥ 1 in L 2 ( R N ) of eigenfunctions of the homogenized problem. Moreover for each n there exists a real constant γ n > 0 such that e γ n | z | ϕ n , e γ n | z | ∇ ϕ n ∈ L 2 ( R N ) . This is localization ! (cf. Anderson in a stochastic framework)

  74. Homogenization of Schr¨ odinger equation 90 G. Allaire Proof. For simplicity assume that Re( c ∗ ) = 0. � � A ∗ ∇ v · ∇ v + D ∗ z · z | v | 2 − iB ∗ Im( vz · ∇ v ) �A ∗ v, v � = R N A ∗ vv dz = � � dz R N Recall that 1 1 D ∗ = 1 A ∗ = B ∗ = 8 π 2 ∇ θ ∇ θ λ n , 2 iπ ∇ θ ∇ x λ n , 2 ∇ x ∇ x λ n . � t � Define Φ( z ) = 2 iπv ( z ) z , ∇ v ( z ) . Then � 1 � � �A ∗ v, v � = ||∇ v || 2 L 2 ( R N ) + || z v || 2 8 π 2 ∇∇ λ n Φ · Φ dz ≥ C L 2 ( R N ) R N The space { v ∈ H 1 ( R N ) s.t. ( zv ) ∈ L 2 ( R N ) } is compactly embedd in L 2 ( R N ). Thus ( A ∗ ) − 1 is compact and admits an hilbertian basis of eigenfunctions. It is classical to show that eigenfunctions decay exponentially at infinity.

  75. Homogenization of Schr¨ odinger equation 91 G. Allaire ✞ ☎ Proof of the homogenization theorem ✝ ✆ Variational proof with an oscillating test function. 1. Change of variables z = x − x n √ ǫ 2. 2nd order Taylor expansion around z = 0 for the macroscopic variable 3. Two-scale convergence at the scale √ ǫ 4. Bloch wave decomposition as in the purely periodic case No need of WKB or semiclassical arguments.

  76. Homogenization of Schr¨ odinger equation 92 G. Allaire Change of variables: z = x − x n √ ǫ , Change of unknowns: w ǫ ( t, z ) := e 2 iπ θn · z √ ǫ v ǫ ( t, z ) = e − i λn ( θn ) t u ǫ ( t, x ) . ǫ New equation: � √ ǫz, z/ √ ǫ ǫ [ c ( √ ǫz, z/ √ ǫ ) − λ n ( θ n )] w ǫ = 0 i∂w ǫ ∇ w ǫ ] + 1  � ∂t − div[ A   ǫ ( √ ǫz ) w ǫ (0 , z ) = u 0   The oscillations are at scale √ ǫ : this is the parabolic scaling !

  77. Homogenization of Schr¨ odinger equation 93 G. Allaire Taylor expansion around zero for the macroscopic variable � √ ǫz, z + √ ǫz ·∇ x c z · z + O ( √ ǫ | z | ) 3 . � � 0 , z � � 0 , z � +1 � 0 , z � c √ ǫ = c √ ǫ √ ǫ 2 ǫ ∇ x ∇ x c √ ǫ We obtain c ( √ ǫz, z/ √ ǫ ) − λ n ( θ n ) 1 � � = ǫ c (0 , z/ √ ǫ ) − λ n ( θ n ) √ ǫz · ∇ x c (0 , z/ √ ǫ ) + 1 z · z + O ( √ ǫ ) 1 + 1 � 0 , z � � � 2 ∇ x ∇ x c √ ǫ ǫ as usual + new singular term to cancel + bounded harmonic potential New test function: � 1 N n φ ( t, z ) + √ ǫ ∂ψ ǫ ∂ψ ǫ ∂φ Ψ ǫ ( t, z ) = e 2 iπθ n · z � �� � ψ ǫ n n √ ǫ ( t, z ) + z k φ ( t, z ) 2 iπ ∂θ k ∂z k ∂x k k =1

  78. Homogenization of Schr¨ odinger equation 94 G. Allaire -VIII- TIME OSCILLATING POTENTIAL i∂u ǫ � x  � � � in R N × (0 , T ) ǫ − 2 c ∂t − ∆ u ǫ + + d ǫ ( t, x ) u ǫ = 0   ǫ u ǫ ( t = 0 , x ) = u 0  in R N , ǫ ( x )  Goal: transfer some energy from the initial data to some target final data � x � x e 2 iπ θn · x e 2 iπ θm · x ǫ , θ n � ǫ , θ m � v T ( x ) u 0 ǫ v 0 ( x ) u T ǫ ( x ) = ψ n ǫ ( x ) = ψ m ǫ For this task, we choose a time oscillating potential t, x, x e i ( λm ( θm ) − λn ( θn )) t e 2 iπ ( θm − θn ) · x � � � � d ǫ ( t, x ) = ℜ d , ǫ 2 ǫ ǫ where d ( t, x, y ) is a real potential defined on [0 , T ] × R N × T N .

  79. Homogenization of Schr¨ odinger equation 95 G. Allaire ✞ ☎ Assumptions ✝ ✆ We assume  λ p ( θ p ) is a simple eigenvalue, ( i )  for p = n, m θ p is a critical point of λ p ( θ ) i.e., ∇ θ λ p ( θ p ) = 0 ( ii )  and a non-resonant assumption λ p (2 θ n − θ m ) � = 2 λ n ( θ n ) − λ m ( θ m ) . ( iii ) for any p ≥ 1 ,

  80. Homogenization of Schr¨ odinger equation 96 G. Allaire Theorem. For an initial data u 0 ǫ ∈ H 1 ( R N ) given by � x e 2 iπ θn · x ǫ , θ n � with v 0 ∈ H 1 ( R N ) , u 0 ǫ v 0 ( x ) ǫ ( x ) = ψ n the solution of the Schr¨ odinger equation can be written as � x u ǫ ( t, x ) = e i λn ( θn ) t e 2 iπ θn · x ǫ , θ n � ǫ ψ n v n ( t, x ) ǫ 2 � x + e i λm ( θm ) t e 2 iπ θm · x ǫ , θ m � ψ m v m ( t, x ) + r ǫ ( t, x ) , ǫ 2 ǫ with � T � R N | r ǫ ( t, x ) | 2 dx = 0 , lim ǫ → 0 0

  81. Homogenization of Schr¨ odinger equation 97 G. Allaire � 2 is the unique solution of the homogenized [0 , T ]; L 2 ( R N ) � and ( v n , v m ) ∈ C Schr¨ odinger system i∂v n  in R N × (0 , T ) ∂t − div ( A ∗ n ∇ v n ) + d ∗ nm ( t, x ) v m = 0       i∂v m   in R N × (0 , T ) ∂t − div ( A ∗ m ∇ v m ) + d ∗  mn ( t, x ) v n = 0   v n ( t = 0 , x ) = v 0 ( x ) in R N        in R N ,  v m ( t = 0 , x ) = 0  1 with A ∗ 8 π 2 ∇ θ ∇ θ λ p ( θ p ), for p = n, m , and ”Fermi golden rule” p = mn ( t, x ) = 1 � ∗ d ∗ T N d ( t, x, y ) ψ n ( y, θ n ) ψ m ( y, θ m ) dy. nm ( t, x ) = d 2

  82. Homogenization of Schr¨ odinger equation 98 G. Allaire ✞ ☎ Comments ✝ ✆ ➫ The exterior potential d ǫ can be light illuminating the semiconductor. ➫ The initial data could be a combination of the to states n and m . ➫ Optical absorption: light excites electrons from the valence band to the conduction band. ➫ Its converse effect is at the root of lasers, light emitting diodes and photo-detectors. ➫ The squared modulus of d ∗ nm is called the transition probability per unit time from state n to m . ➫ Theorem obtained with M. Vanninathan.

  83. Homogenization of Schr¨ odinger equation 99 G. Allaire ✞ ☎ Sketch of the proof ✝ ✆ Define two sequences ǫ ( t, x ) = u ǫ ( t, x ) e − i λn ( θn ) t e − 2 iπ θn · x ǫ , v n ǫ 2 ǫ ( t, x ) = u ǫ ( t, x ) e − i λm ( θm ) t e − 2 iπ θm · x v m . ǫ 2 ǫ They both satisfy the a priori estimate, for p = n, m , � v p ǫ � L ∞ ((0 ,T ); L 2 ( R N )) + ǫ �∇ v p ǫ � L 2 ((0 ,T ) × R N ) ≤ C Up to a subsequence they two-scale converge to limits w p ( t, x, y ) ∈ L 2 � (0 , T ) × R N ; H 1 ( T N ) � .

  84. Homogenization of Schr¨ odinger equation 100 G. Allaire Recall that i∂u ǫ � x  � � � in R N × (0 , T ) ǫ − 2 c ∂t − ∆ u ǫ + + d ǫ ( t, x ) u ǫ = 0   ǫ u ǫ ( t = 0 , x ) = u 0  in R N , ǫ ( x )  with the initial data � x e 2 iπ θn · x ǫ , θ n � u 0 ǫ v 0 ( x ) ǫ ( x ) = ψ n and a time oscillating potential t, x, x e i ( λm ( θm ) − λn ( θn )) t e 2 iπ ( θm − θn ) · x � � � � d ǫ ( t, x ) = ℜ d , ǫ 2 ǫ ǫ where d ( t, x, y ) is a real potential defined on [0 , T ] × R N × T N .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend