on homogenization of periodic hyperbolic systems
play

On homogenization of periodic hyperbolic systems Yulia Meshkova - PowerPoint PPT Presentation

On homogenization of periodic hyperbolic systems Yulia Meshkova y.meshkova@spbu.ru Chebyshev Laboratory, St. Petersburg State University (Russia) Quantissima in the Serenissima III Palazzo Pesaro-Papafava, Venice 21 August 2019 Introduction


  1. On homogenization of periodic hyperbolic systems Yulia Meshkova y.meshkova@spbu.ru Chebyshev Laboratory, St. Petersburg State University (Russia) Quantissima in the Serenissima III Palazzo Pesaro-Papafava, Venice 21 August 2019

  2. Introduction Class of operators Effective operator Survey Problem Results Method Introduction to homogenization The simplest periodic operator. In L 2 ( R d ) , A = − div g ( x ) ∇ , ⇒ A = A ∗ � 0 . g ( x + a ) = g ( x ) , x ∈ R d , a ∈ Z d ; g ∈ L ∞ ; g ( x ) > 0 = Fig. 4: The Fig. 1–3: A periodic medium with different values of ε . effective medium. Homogenization. A ε = − div g ( x /ε ) ∇ , ε > 0 is small. Typical problem: A ε u ε + u ε = F ∈ L 2 ( R d ) . Question: u ε ∼ ? as ε → 0 . Answer: u ε ∼ u 0 , where u 0 solves − div g 0 ∇ u 0 + u 0 = F . �� 1 � − 1 Example. If d = 1 , g 0 = g := 0 g ( x ) − 1 d x . � If d > 1 , g � g 0 � g := (0 , 1) d g ( x ) d x (Voigt-Reuss bracketing). Yulia Meshkova (SPbU) On homogenization of periodic hyperbolic systems 2 / 13

  3. Introduction Class of operators Effective operator Survey Problem Results Method Introduction to homogenization The simplest periodic operator. In L 2 ( R d ) , A = − div g ( x ) ∇ , ⇒ A = A ∗ � 0 . g ( x + a ) = g ( x ) , x ∈ R d , a ∈ Z d ; g ∈ L ∞ ; g ( x ) > 0 = Fig. 4: The Fig. 1–3: A periodic medium with different values of ε . effective medium. Homogenization. A ε = − div g ( x /ε ) ∇ , ε > 0 is small. Typical problem: A ε u ε + u ε = F ∈ L 2 ( R d ) . Question: u ε ∼ ? as ε → 0 . Answer: u ε ∼ u 0 , where u 0 solves − div g 0 ∇ u 0 + u 0 = F . �� 1 � − 1 Example. If d = 1 , g 0 = g := 0 g ( x ) − 1 d x . � If d > 1 , g � g 0 � g := (0 , 1) d g ( x ) d x (Voigt-Reuss bracketing). Yulia Meshkova (SPbU) On homogenization of periodic hyperbolic systems 2 / 13

  4. Introduction Class of operators Effective operator Survey Problem Results Method Introduction to homogenization The simplest periodic operator. In L 2 ( R d ) , A = − div g ( x ) ∇ , ⇒ A = A ∗ � 0 . g ( x + a ) = g ( x ) , x ∈ R d , a ∈ Z d ; g ∈ L ∞ ; g ( x ) > 0 = Fig. 4: The Fig. 1–3: A periodic medium with different values of ε . effective medium. Homogenization. A ε = − div g ( x /ε ) ∇ , ε > 0 is small. Typical problem: A ε u ε + u ε = F ∈ L 2 ( R d ) . Question: u ε ∼ ? as ε → 0 . Answer: u ε ∼ u 0 , where u 0 solves − div g 0 ∇ u 0 + u 0 = F . �� 1 � − 1 Example. If d = 1 , g 0 = g := 0 g ( x ) − 1 d x . � If d > 1 , g � g 0 � g := (0 , 1) d g ( x ) d x (Voigt-Reuss bracketing). Yulia Meshkova (SPbU) On homogenization of periodic hyperbolic systems 2 / 13

  5. Introduction Class of operators Effective operator Survey Problem Results Method Introduction to homogenization The simplest periodic operator. In L 2 ( R d ) , A = − div g ( x ) ∇ , ⇒ A = A ∗ � 0 . g ( x + a ) = g ( x ) , x ∈ R d , a ∈ Z d ; g ∈ L ∞ ; g ( x ) > 0 = Fig. 4: The Fig. 1–3: A periodic medium with different values of ε . effective medium. Homogenization. A ε = − div g ( x /ε ) ∇ , ε > 0 is small. Typical problem: A ε u ε + u ε = F ∈ L 2 ( R d ) . Question: u ε ∼ ? as ε → 0 . Answer: u ε ∼ u 0 , where u 0 solves − div g 0 ∇ u 0 + u 0 = F . �� 1 � − 1 Example. If d = 1 , g 0 = g := 0 g ( x ) − 1 d x . � If d > 1 , g � g 0 � g := (0 , 1) d g ( x ) d x (Voigt-Reuss bracketing). Yulia Meshkova (SPbU) On homogenization of periodic hyperbolic systems 2 / 13

  6. Introduction Class of operators Effective operator Survey Problem Results Method Introduction to homogenization The simplest periodic operator. In L 2 ( R d ) , A = − div g ( x ) ∇ , ⇒ A = A ∗ � 0 . g ( x + a ) = g ( x ) , x ∈ R d , a ∈ Z d ; g ∈ L ∞ ; g ( x ) > 0 = Fig. 4: The Fig. 1–3: A periodic medium with different values of ε . effective medium. Homogenization. A ε = − div g ( x /ε ) ∇ , ε > 0 is small. Typical problem: A ε u ε + u ε = F ∈ L 2 ( R d ) . Question: u ε ∼ ? as ε → 0 . Answer: u ε ∼ u 0 , where u 0 solves − div g 0 ∇ u 0 + u 0 = F . �� 1 � − 1 Example. If d = 1 , g 0 = g := 0 g ( x ) − 1 d x . � If d > 1 , g � g 0 � g := (0 , 1) d g ( x ) d x (Voigt-Reuss bracketing). Yulia Meshkova (SPbU) On homogenization of periodic hyperbolic systems 2 / 13

  7. Introduction Class of operators Effective operator Survey Problem Results Method Introduction to homogenization The simplest periodic operator. In L 2 ( R d ) , A = − div g ( x ) ∇ , ⇒ A = A ∗ � 0 . g ( x + a ) = g ( x ) , x ∈ R d , a ∈ Z d ; g ∈ L ∞ ; g ( x ) > 0 = Fig. 4: The Fig. 1–3: A periodic medium with different values of ε . effective medium. Homogenization. A ε = − div g ( x /ε ) ∇ , ε > 0 is small. Typical problem: A ε u ε + u ε = F ∈ L 2 ( R d ) . Question: u ε ∼ ? as ε → 0 . Answer: u ε ∼ u 0 , where u 0 solves − div g 0 ∇ u 0 + u 0 = F . �� 1 � − 1 Example. If d = 1 , g 0 = g := 0 g ( x ) − 1 d x . � If d > 1 , g � g 0 � g := (0 , 1) d g ( x ) d x (Voigt-Reuss bracketing). Yulia Meshkova (SPbU) On homogenization of periodic hyperbolic systems 2 / 13

  8. Introduction Class of operators Effective operator Survey Problem Results Method Introduction to homogenization The simplest periodic operator. In L 2 ( R d ) , A = − div g ( x ) ∇ , ⇒ A = A ∗ � 0 . g ( x + a ) = g ( x ) , x ∈ R d , a ∈ Z d ; g ∈ L ∞ ; g ( x ) > 0 = Fig. 4: The Fig. 1–3: A periodic medium with different values of ε . effective medium. Homogenization. A ε = − div g ( x /ε ) ∇ , ε > 0 is small. Typical problem: A ε u ε + u ε = F ∈ L 2 ( R d ) . Question: u ε ∼ ? as ε → 0 . Answer: u ε ∼ u 0 , where u 0 solves − div g 0 ∇ u 0 + u 0 = F . �� 1 � − 1 Example. If d = 1 , g 0 = g := 0 g ( x ) − 1 d x . � If d > 1 , g � g 0 � g := (0 , 1) d g ( x ) d x (Voigt-Reuss bracketing). Yulia Meshkova (SPbU) On homogenization of periodic hyperbolic systems 2 / 13

  9. Introduction Class of operators Effective operator Survey Problem Results Method Introduction to homogenization The simplest periodic operator. In L 2 ( R d ) , A = − div g ( x ) ∇ , ⇒ A = A ∗ � 0 . g ( x + a ) = g ( x ) , x ∈ R d , a ∈ Z d ; g ∈ L ∞ ; g ( x ) > 0 = Fig. 4: The Fig. 1–3: A periodic medium with different values of ε . effective medium. Homogenization. A ε = − div g ( x /ε ) ∇ , ε > 0 is small. Typical problem: A ε u ε + u ε = F ∈ L 2 ( R d ) . Question: u ε ∼ ? as ε → 0 . Answer: u ε ∼ u 0 , where u 0 solves − div g 0 ∇ u 0 + u 0 = F . �� 1 � − 1 Example. If d = 1 , g 0 = g := 0 g ( x ) − 1 d x . � If d > 1 , g � g 0 � g := (0 , 1) d g ( x ) d x (Voigt-Reuss bracketing). Yulia Meshkova (SPbU) On homogenization of periodic hyperbolic systems 2 / 13

  10. Introduction Class of operators Effective operator Survey Problem Results Method Introduction to homogenization The simplest periodic operator. In L 2 ( R d ) , A = − div g ( x ) ∇ , ⇒ A = A ∗ � 0 . g ( x + a ) = g ( x ) , x ∈ R d , a ∈ Z d ; g ∈ L ∞ ; g ( x ) > 0 = Fig. 4: The Fig. 1–3: A periodic medium with different values of ε . effective medium. Homogenization. A ε = − div g ( x /ε ) ∇ , ε > 0 is small. Typical problem: A ε u ε + u ε = F ∈ L 2 ( R d ) . Question: u ε ∼ ? as ε → 0 . Answer: u ε ∼ u 0 , where u 0 solves − div g 0 ∇ u 0 + u 0 = F . �� 1 � − 1 Example. If d = 1 , g 0 = g := 0 g ( x ) − 1 d x . � If d > 1 , g � g 0 � g := (0 , 1) d g ( x ) d x (Voigt-Reuss bracketing). Yulia Meshkova (SPbU) On homogenization of periodic hyperbolic systems 2 / 13

  11. Introduction Class of operators Effective operator Survey Problem Results Method Introduction to homogenization The simplest periodic operator. In L 2 ( R d ) , A = − div g ( x ) ∇ , ⇒ A = A ∗ � 0 . g ( x + a ) = g ( x ) , x ∈ R d , a ∈ Z d ; g ∈ L ∞ ; g ( x ) > 0 = Fig. 4: The Fig. 1–3: A periodic medium with different values of ε . effective medium. Homogenization. A ε = − div g ( x /ε ) ∇ , ε > 0 is small. Typical problem: A ε u ε + u ε = F ∈ L 2 ( R d ) . Question: u ε ∼ ? as ε → 0 . Answer: u ε ∼ u 0 , where u 0 solves − div g 0 ∇ u 0 + u 0 = F . �� 1 � − 1 Example. If d = 1 , g 0 = g := 0 g ( x ) − 1 d x . � If d > 1 , g � g 0 � g := (0 , 1) d g ( x ) d x (Voigt-Reuss bracketing). Yulia Meshkova (SPbU) On homogenization of periodic hyperbolic systems 2 / 13

  12. Introduction Class of operators Effective operator Survey Problem Results Method Introduction to homogenization The simplest periodic operator. In L 2 ( R d ) , A = − div g ( x ) ∇ , ⇒ A = A ∗ � 0 . g ( x + a ) = g ( x ) , x ∈ R d , a ∈ Z d ; g ∈ L ∞ ; g ( x ) > 0 = Fig. 4: The Fig. 1–3: A periodic medium with different values of ε . effective medium. Homogenization. A ε = − div g ( x /ε ) ∇ , ε > 0 is small. Typical problem: A ε u ε + u ε = F ∈ L 2 ( R d ) . Question: u ε ∼ ? as ε → 0 . Answer: u ε ∼ u 0 , where u 0 solves − div g 0 ∇ u 0 + u 0 = F . �� 1 � − 1 Example. If d = 1 , g 0 = g := 0 g ( x ) − 1 d x . � If d > 1 , g � g 0 � g := (0 , 1) d g ( x ) d x (Voigt-Reuss bracketing). Yulia Meshkova (SPbU) On homogenization of periodic hyperbolic systems 2 / 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend