homogenization of a pseudoparabolic system
play

Homogenization of a Pseudoparabolic System M. Peszy nska, R.E. - PowerPoint PPT Presentation

Introduction The Classical Bimodal System The Highly-Heterogeneous Case Homogenization of a Pseudoparabolic System M. Peszy nska, R.E. Showalter, Son-Young Yi Department of Mathematics Oregon State University Dubrovnik, 2008 Dept of


  1. Introduction The Classical Bimodal System The Highly-Heterogeneous Case Homogenization of a Pseudoparabolic System M. Peszy´ nska, R.E. Showalter, Son-Young Yi Department of Mathematics Oregon State University Dubrovnik, 2008 Dept of Energy, Office of Science, 98089 “Modeling, Analysis, and Simulation of Multiscale Preferential Flow” Peszynska-RES-Yi Dubrovnik, 2008

  2. Introduction The Classical Bimodal System The Highly-Heterogeneous Case Outline Introduction 1 Richards Equation Pseudoparabolic System Asymptotic Expansion The Classical Bimodal System 2 The ε -problem The Partially-Upscaled System The Upscaled System The Highly-Heterogeneous Case 3 The ε -problem The Partially-Upscaled System The Macro-Micro System Peszynska-RES-Yi Dubrovnik, 2008

  3. Introduction Richards Equation The Classical Bimodal System Pseudoparabolic System The Highly-Heterogeneous Case Asymptotic Expansion Richards Equation Two-phase flow through a partially-saturated porous medium with porosity φ ( x ) , permeability K ( x ) , relative permeability k w ( u ) and capillary pressure function P c ( u ) : φ ( x ) ∂ u ∂ t − ∇ · K ( x ) k w ( u ) ∇ ( P c ( u ) + ρ Gd ( x )) = 0 , µ w u ( x , t ) denotes saturation, and gravitational effects depend on depth d ( x ) = x 3 . Peszynska-RES-Yi Dubrovnik, 2008

  4. Introduction Richards Equation The Classical Bimodal System Pseudoparabolic System The Highly-Heterogeneous Case Asymptotic Expansion Dynamic Capillary Pressure Experimental determination of p = P c ( u ) is based on the assumption that this is an instantaneous process. In reality it requires substantial time to approach an equilibrium before measurements can be taken. Hassanizadeh-Gray (1993) model ∂ u P c , dyn ( u ) ≡ P c ( u ) + τ H ∂ t : φ ( x ) ∂ u ∂ t − ∇ · K ( x ) k w ( u ) ∇ ( P c ( u ) + ρ Gd ( x )) µ w − ∇ · K ( x ) k w ( u ) ∂ u ∇ τ H ∂ t = 0 . µ w Peszynska-RES-Yi Dubrovnik, 2008

  5. Introduction Richards Equation The Classical Bimodal System Pseudoparabolic System The Highly-Heterogeneous Case Asymptotic Expansion pseudoparabolic equation Linearize ... the pseudoparabolic equation ∂ u ( t , x )+ τ ( x ) ∂ � � � � φ ( x ) u ( t , x ) −∇· κ ( x ) ∇ ∂ t φ ( x ) u ( t , x ) = 0 ∂ t is distinguished from the usual parabolic equation by τ ( x ) > 0. Porous media applications require that we know how to homogenize such equations. Peszynska-RES-Yi Dubrovnik, 2008

  6. Introduction Richards Equation The Classical Bimodal System Pseudoparabolic System The Highly-Heterogeneous Case Asymptotic Expansion Bensoussan, Lions, and Papanicolaou briefly investigated the homogenization of pseudoparabolic equations as an example for which the limiting problem is of a different type, and perhaps non-local , not even a PDE. We shall see below that this occurs when certain variables are eliminated or hidden . Peszynska-RES-Yi Dubrovnik, 2008

  7. Introduction Richards Equation The Classical Bimodal System Pseudoparabolic System The Highly-Heterogeneous Case Asymptotic Expansion pseudoparabolic system ∂ 1 � � � � φ ( x ) u ( t , x ) + u ( t , x ) − v ( t , x ) = 0 , ∂ t τ ( x ) 1 � � � � − ∇ · κ ( x ) ∇ v ( t , x ) + v ( t , x ) − u ( t , x ) = 0 , x ∈ Ω , τ ( x ) v ( t , s ) = 0 , s ∈ ∂ Ω , φ ( x ) u ( 0 , x ) = φ ( x ) u 0 ( x ) , x ∈ Ω . Peszynska-RES-Yi Dubrovnik, 2008

  8. Introduction Richards Equation The Classical Bimodal System Pseudoparabolic System The Highly-Heterogeneous Case Asymptotic Expansion Asymptotic Expansion Let Y denote the unit cube in R N . Let the Y -periodic functions φ ( y ) , τ ( y ) , κ ( y ) be given and define φ ε ( x ) = φ ( x ε ) , τ ε ( x ) = τ ( x ε ) , κ ε ( x ) = κ ( x ε ) . The corresponding solution u ε , v ε depends on ε . We write these as formal asymptotic expansions ∞ ∞ � � ε p u p ( t , x , y ) , ε p v p ( t , x , y ) , u ε ( t , x ) = v ε ( t , x ) = p = 0 p = 0 y = x ε , with each u p ( t , x , · ) , v p ( t , x , · ) being Y -periodic. Peszynska-RES-Yi Dubrovnik, 2008

  9. Introduction Richards Equation The Classical Bimodal System Pseudoparabolic System The Highly-Heterogeneous Case Asymptotic Expansion Cell problem The effective tensor κ ∗ is obtained in this calculation as � κ ∗ ij = Y κ ( y )( ∇ y ω i ( y ) + e i ) · ( ∇ y ω j ( y ) + e j ) dy , where Periodic Cell Problem : ω j is Y -periodic and −∇ y · κ ( y ) ( ∇ y ω j ( y ) + e j ) = 0 , j = 1 . . . N . Peszynska-RES-Yi Dubrovnik, 2008

  10. Introduction Richards Equation The Classical Bimodal System Pseudoparabolic System The Highly-Heterogeneous Case Asymptotic Expansion partially-upscaled system The leading terms in the expansion satisfy the pseudoparabolic system φ ( y ) ∂ u 0 ( t , x , y ) 1 + τ ( y )( u 0 ( t , x , y ) − v 0 ( t , x )) = 0 , ∂ t � 1 −∇ · κ ∗ ∇ v 0 ( t , x ) + τ ( y )( v 0 ( t , x ) − u 0 ( t , x , y )) dy = 0 , Y together with boundary and initial conditons, v 0 ( t , s ) = 0 , s ∈ ∂ Ω , u 0 ( 0 , x , y ) = u 0 ( x ) . Peszynska-RES-Yi Dubrovnik, 2008

  11. Introduction Richards Equation The Classical Bimodal System Pseudoparabolic System The Highly-Heterogeneous Case Asymptotic Expansion Upscaled pseudoparabolic equation Only if the product φ ( · ) τ ( · ) is constant do we get u 0 ( t , x , y ) = u 0 ( t , x ) independent of y ∈ Y , and in that case we can eliminate v 0 from the system: φ ∗ ∂ u 0 ( t , x ) − ∇ · κ ∗ ∇ u 0 ( t , x ) − ∇ · κ ∗ ∇ φ ∗ τ ∗ ∂ u 0 ( t , x ) = 0 . ∂ t ∂ t NOTE: φ ∗ = � Y φ ( y ) dy is the average � − 1 τ ∗ = �� 1 τ ( y ) dy is the harmonic average Y Peszynska-RES-Yi Dubrovnik, 2008

  12. Introduction The ε -problem The Classical Bimodal System The Partially-Upscaled System The Highly-Heterogeneous Case The Upscaled System Classical Bimodal Medium Unit cube Y is given in open disjoint complementary parts, Y 1 and Y 2 , χ j ( y ) = Y -periodic characteristic function of Y j . Corresponding ε -periodic characteristic functions are � x � χ ε j ( x ) ≡ χ j x ∈ R N , , j = 1 , 2 , ε and these partition the global domain Ω into two sub-domains, Ω ε 1 and Ω ε 2 by x ∈ Ω : χ ε Ω ε � � j ≡ j ( x ) = 1 , j = 1 , 2 . Peszynska-RES-Yi Dubrovnik, 2008

  13. Introduction The ε -problem The Classical Bimodal System The Partially-Upscaled System The Highly-Heterogeneous Case The Upscaled System Coefficients Given φ j ( · , · ) , κ j ( · , · ) , τ j ( · , · ) ∈ L ∞ (Ω; C ( Y j )) , define Y -periodic functions in L ∞ (Ω; L 2 # ( Y )) by φ ( x , y ) ≡ φ j ( x , y ) , y ∈ Y j , j = 1 , 2 , x ∈ Ω , similarly κ ( x , y ) and τ ( x , y ) . Corresponding functions on Ω ε j are x , x x , x x , x � � � � � � φ ε κ ε τ ε j ( x ) ≡ φ j , j ( x ) ≡ κ j , j ( x ) ≡ τ j , ε ε ε and coefficients for the pseudoparabolic system are φ ε ( x ) ≡ χ ε 1 ( x ) φ ε 1 ( x ) + χ ε 2 ( x ) φ ε 2 ( x ) , κ ε ( x ) ≡ χ ε 1 ( x ) κ ε 1 ( x ) + χ ε 2 ( x ) κ ε 2 ( x ) , τ ε ( x ) ≡ χ ε 1 ( x ) τ ε 1 ( x ) + χ ε 2 ( x ) τ ε 2 ( x ) . Peszynska-RES-Yi Dubrovnik, 2008

  14. Introduction The ε -problem The Classical Bimodal System The Partially-Upscaled System The Highly-Heterogeneous Case The Upscaled System The ε - problem u ε ( · ) ∈ H 1 (( 0 , T ); L 2 (Ω)) and v ε ( · ) ∈ L 2 (( 0 , T ); H 1 0 (Ω)) φ ε ( x ) ∂ u ε ( t , x ) 1 u ε ( t , x ) − v ε ( t , x ) � � + = 0 , x ∈ Ω , ∂ t τ ε ( x ) 1 � κ ε 1 ( x ) ∇ v ε ( t , x ) � � v ε ( t , x ) − u ε ( t , x ) � = 0 , x ∈ Ω ε −∇ · + 1 , τ ε 1 ( x ) 1 κ ε 2 ( x ) ∇ v ε ( t , x ) v ε ( t , x ) − u ε ( t , x ) = 0 , x ∈ Ω ε � � � � −∇ · + 2 , τ ε 2 ( x ) γ ε 1 v ε ( t , s ) = γ ε 2 v ε ( t , s ) , κ ε 1 ( s ) ∇ v ε ( t , s ) · ν = κ ε 2 ( s ) ∇ v ε ( t , s ) · ν, s ∈ Γ ε , boundary condition v ε ( t , s ) = 0 , s ∈ ∂ Ω , and the initial condition u ε ( 0 , x ) = u 0 ( x ) , x ∈ Ω , independent of ε . Peszynska-RES-Yi Dubrovnik, 2008

  15. Introduction The ε -problem The Classical Bimodal System The Partially-Upscaled System The Highly-Heterogeneous Case The Upscaled System two-scale limit LEMMA 1: For each ε > 0, let u ε ( · ) , v ε ( · ) denote the unique solution to the pseudoparabolic ε -problem. There exist (i) a function U in L 2 � ( 0 , T ) × Ω; L 2 � # ( Y ) , (ii) a function v in L 2 � ( 0 , T ); H 1 � 0 (Ω) , (ii) a function V in L 2 � ( 0 , T ) × Ω; H 1 � # ( Y ) / R , and a subsequence which two-scale converges 2 u ε → U ( t , x , y ) , 2 v ε → v ( t , x ) , 2 ∇ v ε → ∇ v ( t , x ) + ∇ y V ( t , x , y ) . Peszynska-RES-Yi Dubrovnik, 2008

  16. Introduction The ε -problem The Classical Bimodal System The Partially-Upscaled System The Highly-Heterogeneous Case The Upscaled System The effective tensor κ ∗ is given by � κ ∗ ij ( x ) = κ ( x , y )( ∇ y ω i ( x , y ) + e i ) · ( ∇ y ω j ( x , y ) + e j ) dy . Y where each ω k is the solution of the periodic cell problem ω k ∈ L 2 (Ω; H 1 # ( Y )) : � � � κ ( x , y ) ∇ y ω k ( x , y ) + e k · ∇ y Ψ( x , y ) dy = 0 Y for all Ψ ∈ L 2 (Ω; H 1 # ( Y )) . � (Let’s ask that Y ω k ( x , y ) dy = 0 to fix the constant.) Peszynska-RES-Yi Dubrovnik, 2008

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend