homogenization of reactive transport in porous media
play

HOMOGENIZATION OF REACTIVE TRANSPORT IN POROUS MEDIA Gr egoire - PowerPoint PPT Presentation

Homogenization of reactive transport 1 G. Allaire HOMOGENIZATION OF REACTIVE TRANSPORT IN POROUS MEDIA Gr egoire ALLAIRE, CMAP, Ecole Polytechnique Andro MIKELIC, ICJ, Universit e Lyon 1 Andrey PIATNITSKI, Narvik University. Work


  1. Homogenization of reactive transport 1 G. Allaire HOMOGENIZATION OF REACTIVE TRANSPORT IN POROUS MEDIA Gr´ egoire ALLAIRE, CMAP, Ecole Polytechnique Andro MIKELIC, ICJ, Universit´ e Lyon 1 Andrey PIATNITSKI, Narvik University. Work partially supported by the GDR MOMAS CNRS-2439 Dedicated to Alain Bourgeat 1. Introduction 2. Main result 3. Two-scale asymptotic expansions with drift 4. Rigorous proof

  2. Homogenization of reactive transport 2 G. Allaire -I- INTRODUCTION We consider a periodic porous medium: fluid part Ω f , solid part R n \ Ω f . convection diffusion of a single solute: ∂c ∗ ∂t ∗ + b ∗ · ∇ x ∗ c ∗ − div x ∗ ( D ∗ ∇ x ∗ c ∗ ) = 0 in Ω f × (0 , T ∗ ) , with a linear adsorption process on the pore boundaries: c ∗ c ∗ − D ∗ ∇ x ∗ c ∗ · n = ∂ ˆ ∂t ∗ = k ∗ ( c ∗ − ˆ on ∂ Ω f × (0 , T ∗ ) , K ∗ ) The incompressible fluid velocity b ∗ ( x ∗ , t ∗ ) is assumed to be known. The unknowns are the concentrations c ∗ in the fluid and ˆ c ∗ on the solid boundary.

  3. Homogenization of reactive transport 3 G. Allaire ✞ ☎ Scaling ✝ ✆ We adimensionalize the equations as follows: ✗ Characteristic lengthscale L R and timescale T R . ℓ ✗ Period ℓ << L R : we introduce a small parameter ǫ = L R . ✗ Characteristic velocity b R . ✗ Characteristic concentrations c R and ˆ c R . ✗ Characteristic diffusivity D R . ✗ Characteristic adsorption rate k R and adsorption equilibrium constant K R . New adimensionalized variables and constants: x = x ∗ , t = t ∗ , b ǫ ( x, t ) = b ∗ ( x ∗ , t ∗ ) , D = D ∗ , k = k ∗ , K = K ∗ L R T R b R D R k R K R

  4. Homogenization of reactive transport 4 G. Allaire ✞ ☎ Scaling (continued) ✝ ✆ New unknowns: u ǫ = c ∗ , v ǫ = ˆ c c R ˆ c R and dimensionless equations ∂u ǫ ∂t + V R T R b ǫ · ∇ x u ǫ − D R T R div x ( D ∇ x u ǫ ) = 0 in Ω ǫ × (0 , T ) L 2 L R R and − DD R c R ∇ x u ǫ · n = ˆ c R ∂v ǫ ∂t = k R k ( c R u ǫ − ˆ c R v ǫ ) on ∂ Ω ǫ × (0 , T ) . L R T R KK R T diff eclet number: Pe = L R b R P´ = D R T advec = T diff Damkohler number: Da = L R k R D R T react We choose a diffusion timescale, i.e., we assume T R = L 2 D R = T diff . R

  5. Homogenization of reactive transport 5 G. Allaire ✞ ☎ Scaling (continued) ✝ ✆ ∂u ǫ ∂t + Pe b ǫ · ∇ x u ǫ − div x ( D ∇ x u ǫ ) = 0 in Ω ǫ × (0 , T ) and ˆ c R ∂v ǫ c R v ǫ ˆ − D ∇ x u ǫ · n = ∂t = Da k ( u ǫ − ) on ∂ Ω ǫ × (0 , T ) . c R L R c R KK R We assume ˆ c R = T adsorp c R ˆ = T adsorp Pe = ǫ − 1 , Da = ǫ − 1 , = ǫ, = 1 c R L R T react c R K R T desorp

  6. Homogenization of reactive transport 6 G. Allaire ✞ ☎ Scaling (continued) ✝ ✆  ∂u ǫ ∂t + 1 ǫ b ǫ · ∇ x u ǫ − div x ( D ǫ ∇ x u ǫ ) = 0 in Ω ǫ × (0 , T )        u ǫ ( x, 0) = u 0 ( x ) , x ∈ Ω ǫ ,   − D ǫ ∇ x u ǫ · n = ǫ∂v ǫ ∂t = k ǫ ( u ǫ − v ǫ   K ) on ∂ Ω ǫ × (0 , T )        v ǫ ( x, 0) = v 0 ( x ) , x ∈ ∂ Ω ǫ Assumptions: ✗ Unit cell Y = (0 , 1) n = Y ∗ ∪ O with fluid part Y ∗ � x � with div y b = 0 in Y ∗ ✗ Stationary incompressible periodic flow b ǫ ( x ) = b ǫ and b · n = 0 on ∂ O (not a necessary assumption, see Allaire-Raphael 2007) � x � ✗ Periodic symmetric coercive diffusion D ǫ ( x ) = D ǫ

  7. Homogenization of reactive transport 7 G. Allaire ✞ ☎ Goal of homogenization ✝ ✆ Find the effective diffusion tensor. This is the so-called problem of Taylor dispersion (1953). Many previous works, including Adler, Auriault, van Duijn, Knabner, Mauri, Mikelic, Quintard, Rosier, Rubinstein, etc.

  8. Homogenization of reactive transport 8 G. Allaire -II- MAIN RESULT Theorem. The solution ( u ǫ , v ǫ ) satisfies � � � � t, x − b ∗ t, x − b ∗ u ǫ ( t, x ) ≈ u 0 ǫ t and v ǫ ( t, x ) ≈ Ku 0 ǫ t with the effective drift � b ∗ = ( | Y ∗ | + | ∂ O| n − 1 K ) − 1 Y ∗ b ( y ) dy and u 0 the solution of the homogenized problem  ∂u 0 in R n × (0 , T ) ∂t − div ( A ∗ ∇ u 0 ) = 0    u 0 ( t = 0 , x ) = | Y ∗ | u 0 ( x ) + | ∂ O| n − 1 v 0 ( x )  in R n   | Y ∗ | + K | ∂ O| n − 1

  9. Homogenization of reactive transport 9 G. Allaire ✞ ☎ Precise convergence ✝ ✆ � � � � t, x − b ∗ t, x − b ∗ + r u + r v u ǫ ( t, x ) = u 0 ǫ t ǫ ( t, x ) and v ǫ ( t, x ) = Ku 0 ǫ t ǫ ( t, x ) with � T � ( t, x ) | 2 dt dx = 0 , R n | r u,v lim ǫ ǫ → 0 0

  10. Homogenization of reactive transport 10 G. Allaire ✞ ☎ Homogenized coefficients ✝ ✆ The homogenized diffusion tensor is A ∗ = ( | Y ∗ | + K | ∂ O| n − 1 ) − 1 � � A ∗ 1 + A ∗ 2 � 1 = K 2 k | ∂ O| n − 1 b ∗ ⊗ b ∗ and A ∗ Y ∗ D ( I + ∇ y w ( y ))( I + ∇ y w ( y )) T dy with A ∗ 2 = where the components w i ( y ), 1 ≤ i ≤ n , of w ( y ) are solutions of the cell problem  b ( y ) · ∇ y w i − div y ( D ( y ) ( ∇ y w i + e i )) = ( b ∗ − b ( y )) · e i in Y ∗     D ( y ) ( ∇ y w i + e i ) · n = Kb ∗ · e i on ∂ O     y → w i ( y ) Y -periodic Remark that the value of b ∗ is exactly the compatibility condition for the existence of w i .

  11. Homogenization of reactive transport 11 G. Allaire ✞ ☎ Equivalent homogenized equation ✝ ✆ � � t, x − b ∗ Define ˜ u ǫ ( t, x ) = u 0 ǫ t . Then, it is solution of  ∂ ˜ ∂t + 1 u ǫ ǫ b ∗ · ∇ ˜ in R n × (0 , T ) u ǫ − div ( A ∗ ∇ ˜  u ǫ ) = 0   u ǫ ( t = 0 , x ) = | Y ∗ | u 0 ( x ) + | ∂ O| n − 1 v 0 ( x )  in R n ˜   | Y ∗ | + K | ∂ O| n − 1

  12. Homogenization of reactive transport 12 G. Allaire -III- TWO-SCALE ANSATZ WITH DRIFT To motivate our result, let us start with a formal process. Standard two-scale asymptotic expansions should be modified to introduce an unknown large drift b ∗ ∈ R n + ∞ � � t, x − b ∗ t ǫ , x � ǫ i u i u ǫ ( t, x ) = , ǫ i =0 with u i ( t, x, y ) a function of the macroscopic variable x and of the periodic microscopic variable y ∈ Y = (0 , 1) n . Similarly + ∞ � � t, x − b ∗ t ǫ , x � ǫ i v i v ǫ ( t, x ) = ǫ i =0

  13. Homogenization of reactive transport 13 G. Allaire We plug these ansatz in the system of equations and use the usual chain rule derivation � � �� � � � t, x − b ∗ t t, x − b ∗ t ǫ , x ǫ , x � ǫ − 1 ∇ y u i + ∇ x u i ∇ u i = , ǫ ǫ plus a new contribution   � � �� t, x − b ∗ t ∂ ǫ , x  ∂u i � t, x, x � ∂t − ǫ − 1 b ∗ · ∇ x u i u i =  ∂t ǫ ǫ � �� � new term

  14. Homogenization of reactive transport 14 G. Allaire  ∂u ǫ ∂t + 1 ǫ b ǫ · ∇ x u ǫ − div x ( D ǫ ∇ x u ǫ ) = 0 in Ω ǫ × (0 , T )        u ǫ ( x, 0) = u 0 ( x ) , x ∈ Ω ǫ ,   − 1 ǫ D ǫ ∇ x u ǫ · n = ∂v ǫ ∂t = k ǫ 2 ( u ǫ − v ǫ   K ) on ∂ Ω ǫ × (0 , T )        v ǫ ( x, 0) = v 0 ( x ) , x ∈ ∂ Ω ǫ

  15. Homogenization of reactive transport 15 G. Allaire ✞ ☎ Fredholm alternative in the unit cell ✝ ✆ Lemma. The boundary value problem  b ( y ) · ∇ y v ( y ) − div y ( D ( y ) ∇ y v ( y )) = g ( y ) in Y ∗    D ( y ) ∇ y v ( y ) · n = h ( y ) on ∂ O    y → v ( y ) Y -periodic admits a unique solution in H 1 ( Y ∗ ), up to an additive constant, if and only if � � Y ∗ g ( y ) dy + h ( y ) ds = 0 . ∂ O Recall that Y = Y ∗ ∪ O with Y ∗ = fluid part and O = solid obstacle.

  16. Homogenization of reactive transport 16 G. Allaire ✞ ☎ Cascade of equations ✝ ✆ Equation of order ǫ − 2 :  b ( y ) · ∇ y u 0 − div y ( D ( y ) ∇ y u 0 ) = 0 in Y ∗    � � u 0 − v 0 D ( y ) ∇ y u 0 · n = 0 = k on ∂ O K    y → u 0 , v 0 ( t, x, y ) Y -p´ eriodique We deduce u 0 ( t, x, y ) ≡ u 0 ( t, x ) and v 0 ( t, x, y ) ≡ Ku 0 ( t, x )

  17. Homogenization of reactive transport 17 G. Allaire Equation of order ǫ − 1 :  − b ∗ · ∇ x u 0 + b ( y ) · ( ∇ x u 0 + ∇ y u 1 ) − div y ( D ( y ) ( ∇ x u 0 + ∇ y u 1 )) = 0 in Y ∗     � � − D ( y ) ( ∇ x u 0 + ∇ y u 1 ) · n = − b ∗ · ∇ x v 0 · n = k u 1 − v 1 on ∂ O K     y → u 1 , v 1 ( t, x, y ) Y -periodic We deduce n v 1 = Ku 1 + K 2 ∂u 0 � k b ∗ · ∇ x u 0 u 1 ( t, x, y ) = ( t, x ) w i ( y ) and ∂x i i =1

  18. Homogenization of reactive transport 18 G. Allaire ✞ ☎ Cell problem ✝ ✆  b ( y ) · ∇ y w i − div y ( D ( y ) ( ∇ y w i + e i )) = ( b ∗ − b ( y )) · e i in Y ∗     D ( y ) ( ∇ y w i + e i ) · n = Kb ∗ · e i on ∂ O     y → w i ( y ) Y -periodic The compatibility condition (Fredholm alternative) for the existence of w i is � b ∗ = ( | Y ∗ | + | ∂ O| n − 1 K ) − 1 Y ∗ b ( y ) dy.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend