on the cubic quintic schr odinger equation
play

On the cubic-quintic Schr odinger equation R emi Carles CNRS - PowerPoint PPT Presentation

On the cubic-quintic Schr odinger equation R emi Carles CNRS & Univ Rennes Based on a joint work with Christof Sparber (Univ. Illinois) R emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr odinger equation 1 / 23 Cubic


  1. On the cubic-quintic Schr¨ odinger equation R´ emi Carles CNRS & Univ Rennes Based on a joint work with Christof Sparber (Univ. Illinois) R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 1 / 23

  2. Cubic Schr¨ odinger equation in 2D i ∂ u ∂ t + 1 2∆ u = λ | u | 2 u , x ∈ R d , with λ ∈ R . � Appears in various physical contexts: optics, superfluids, BEC, etc. � Often, cubic nonlinearity stems from Taylor expansion: f ( | u | 2 ) u . Conserved quantities: M = � u ( t ) � 2 Mass: L 2 ( R d ) , � Angular momentum: J = Im R d ¯ u ( t , x ) ∇ u ( t , x ) dx , E = �∇ u ( t ) � 2 L 2 ( R d ) + λ � u ( t ) � 4 Energy: L 4 ( R d ) . � The sign of λ plays a role at the level of the energy. . . but not only. R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 2 / 23

  3. Cubic Schr¨ odinger equation in 2D i ∂ u ∂ t + 1 2∆ u = λ | u | 2 u , x ∈ R d , with λ ∈ R . � Appears in various physical contexts: optics, superfluids, BEC, etc. � Often, cubic nonlinearity stems from Taylor expansion: f ( | u | 2 ) u . Conserved quantities: M = � u ( t ) � 2 Mass: L 2 ( R d ) , � Angular momentum: J = Im R d ¯ u ( t , x ) ∇ u ( t , x ) dx , E = �∇ u ( t ) � 2 L 2 ( R d ) + λ � u ( t ) � 4 Energy: L 4 ( R d ) . � The sign of λ plays a role at the level of the energy. . . but not only. R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 2 / 23

  4. Cubic Schr¨ odinger equation in 2D i ∂ u ∂ t + 1 2∆ u = λ | u | 2 u , x ∈ R d , with λ ∈ R . � Appears in various physical contexts: optics, superfluids, BEC, etc. � Often, cubic nonlinearity stems from Taylor expansion: f ( | u | 2 ) u . Conserved quantities: M = � u ( t ) � 2 Mass: L 2 ( R d ) , � Angular momentum: J = Im R d ¯ u ( t , x ) ∇ u ( t , x ) dx , E = �∇ u ( t ) � 2 L 2 ( R d ) + λ � u ( t ) � 4 Energy: L 4 ( R d ) . � The sign of λ plays a role at the level of the energy. . . but not only. R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 2 / 23

  5. Cubic Schr¨ odinger equation in 2D i ∂ u ∂ t + 1 2∆ u = λ | u | 2 u , x ∈ R d , with λ ∈ R . � Appears in various physical contexts: optics, superfluids, BEC, etc. � Often, cubic nonlinearity stems from Taylor expansion: f ( | u | 2 ) u . Conserved quantities: M = � u ( t ) � 2 Mass: L 2 ( R d ) , � Angular momentum: J = Im R d ¯ u ( t , x ) ∇ u ( t , x ) dx , E = �∇ u ( t ) � 2 L 2 ( R d ) + λ � u ( t ) � 4 Energy: L 4 ( R d ) . � The sign of λ plays a role at the level of the energy. . . but not only. R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 2 / 23

  6. Cubic Schr¨ odinger equation in 2D i ∂ u ∂ t + 1 2∆ u = λ | u | 2 u , x ∈ R d , with λ ∈ R . � Appears in various physical contexts: optics, superfluids, BEC, etc. � Often, cubic nonlinearity stems from Taylor expansion: f ( | u | 2 ) u . Conserved quantities: M = � u ( t ) � 2 Mass: L 2 ( R d ) , � Angular momentum: J = Im R d ¯ u ( t , x ) ∇ u ( t , x ) dx , E = �∇ u ( t ) � 2 L 2 ( R d ) + λ � u ( t ) � 4 Energy: L 4 ( R d ) . � The sign of λ plays a role at the level of the energy. . . but not only. R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 2 / 23

  7. Well-posedness i ∂ u ∂ t + 1 2∆ u = λ | u | 2 u , x ∈ R d , λ ∈ R . M = � u ( t ) � 2 E = �∇ u ( t ) � 2 L 2 ( R d ) + λ � u ( t ) � 4 L 2 ( R d ) , L 4 ( R d ) . Impose u | t =0 = u 0 . d = 1: u 0 ∈ L 2 � u ∈ C ( R ; L 2 ), higher regularity propagated (Tsutsumi 1987). d = 2: u 0 ∈ L 2 , λ > 0 � u ∈ C ( R ; L 2 ), higher regularity propagated (Dodson 2015). d = 3: u 0 ∈ H 1 , λ > 0 � u ∈ C ( R ; H 1 ), higher regularity propagated (Ginibre & Velo 1979). If λ < 0 and d � 2, finite time blow-up is possible. R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 3 / 23

  8. Well-posedness i ∂ u ∂ t + 1 2∆ u = λ | u | 2 u , x ∈ R d , λ ∈ R . M = � u ( t ) � 2 E = �∇ u ( t ) � 2 L 2 ( R d ) + λ � u ( t ) � 4 L 2 ( R d ) , L 4 ( R d ) . Impose u | t =0 = u 0 . d = 1: u 0 ∈ L 2 � u ∈ C ( R ; L 2 ), higher regularity propagated (Tsutsumi 1987). d = 2: u 0 ∈ L 2 , λ > 0 � u ∈ C ( R ; L 2 ), higher regularity propagated (Dodson 2015). d = 3: u 0 ∈ H 1 , λ > 0 � u ∈ C ( R ; H 1 ), higher regularity propagated (Ginibre & Velo 1979). If λ < 0 and d � 2, finite time blow-up is possible. R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 3 / 23

  9. Finite time blow-up i ∂ u ∂ t + 1 2∆ u = −| u | 2 u , x ∈ R d , u | t =0 = u 0 . E = �∇ u ( t ) � 2 L 2 ( R d ) − � u ( t ) � 4 L 4 ( R d ) . Theorem (Zhakharov 1972, Glassey 1977) Suppose d � 2 and u 0 ∈ H 1 ∩ F ( H 1 ) . If E < 0 , then ∃ T ± > 0 , �∇ u ( t ) � L 2 ( R d ) t →± T ± ∞ . − → Proof. � R d | x | 2 | u ( t , x ) | 2 dx is C 2 as long as u is H 1 , and The map t �→ � d 2 R d | x | 2 | u ( t , x ) | 2 dx � 2 E . dt 2 R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 4 / 23

  10. Finite time blow up (continued) i ∂ u ∂ t + 1 2∆ u = −| u | 2 u , x ∈ R d , u | t =0 = u 0 . E = �∇ u ( t ) � 2 L 2 ( R d ) − � u ( t ) � 4 L 4 ( R d ) . Gagliardo-Nirenberg: � u � 4 L 4 ( R d ) � C � u � 4 − d L 2 ( R d ) �∇ u � d L 2 ( R d ) . � No blow-up if d = 1. � No blow-up if d = 2 and � u 0 � L 2 ≪ 1. � No blow-up if d = 3 and � u 0 � H 1 ≪ 1. R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 5 / 23

  11. Finite time blow up (continued) i ∂ u ∂ t + 1 2∆ u = −| u | 2 u , x ∈ R d , u | t =0 = u 0 . E = �∇ u ( t ) � 2 L 2 ( R d ) − � u ( t ) � 4 L 4 ( R d ) . Gagliardo-Nirenberg: � u � 4 L 4 ( R d ) � C � u � 4 − d L 2 ( R d ) �∇ u � d L 2 ( R d ) . � No blow-up if d = 1. � No blow-up if d = 2 and � u 0 � L 2 ≪ 1. � No blow-up if d = 3 and � u 0 � H 1 ≪ 1. R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 5 / 23

  12. Finite time blow up (continued) i ∂ u ∂ t + 1 2∆ u = −| u | 2 u , x ∈ R d , u | t =0 = u 0 . E = �∇ u ( t ) � 2 L 2 ( R d ) − � u ( t ) � 4 L 4 ( R d ) . Gagliardo-Nirenberg: � u � 4 L 4 ( R d ) � C � u � 4 − d L 2 ( R d ) �∇ u � d L 2 ( R d ) . � No blow-up if d = 1. � No blow-up if d = 2 and � u 0 � L 2 ≪ 1. � No blow-up if d = 3 and � u 0 � H 1 ≪ 1. R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 5 / 23

  13. The 2D case E = �∇ u ( t ) � 2 L 2 ( R 2 ) − � u ( t ) � 4 L 4 ( R 2 ) . � u � 4 L 4 ( R 2 ) � C � u � 2 L 2 ( R 2 ) �∇ u � 2 L 2 ( R 2 ) . Best constant? M. Weinstein 1983, � � 2 � u � L 2 ( R 2 ) � u � 4 �∇ u � 2 L 4 ( R 2 ) � L 2 ( R 2 ) , � Q � L 2 ( R 2 ) where Q is the unique positive, radial solution to − 1 2∆ Q + Q = Q 3 , x ∈ R 2 . � If � u 0 � L 2 < � Q � L 2 , GWP. � If � u 0 � L 2 � � Q � L 2 , blow-up may happen. (M. Weinstein, Merle, Merle-Rapha¨ el, etc.) R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 6 / 23

  14. The 2D case E = �∇ u ( t ) � 2 L 2 ( R 2 ) − � u ( t ) � 4 L 4 ( R 2 ) . � u � 4 L 4 ( R 2 ) � C � u � 2 L 2 ( R 2 ) �∇ u � 2 L 2 ( R 2 ) . Best constant? M. Weinstein 1983, � � 2 � u � L 2 ( R 2 ) � u � 4 �∇ u � 2 L 4 ( R 2 ) � L 2 ( R 2 ) , � Q � L 2 ( R 2 ) where Q is the unique positive, radial solution to − 1 2∆ Q + Q = Q 3 , x ∈ R 2 . � If � u 0 � L 2 < � Q � L 2 , GWP. � If � u 0 � L 2 � � Q � L 2 , blow-up may happen. (M. Weinstein, Merle, Merle-Rapha¨ el, etc.) R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 6 / 23

  15. The 2D case E = �∇ u ( t ) � 2 L 2 ( R 2 ) − � u ( t ) � 4 L 4 ( R 2 ) . � u � 4 L 4 ( R 2 ) � C � u � 2 L 2 ( R 2 ) �∇ u � 2 L 2 ( R 2 ) . Best constant? M. Weinstein 1983, � � 2 � u � L 2 ( R 2 ) � u � 4 �∇ u � 2 L 4 ( R 2 ) � L 2 ( R 2 ) , � Q � L 2 ( R 2 ) where Q is the unique positive, radial solution to − 1 2∆ Q + Q = Q 3 , x ∈ R 2 . � If � u 0 � L 2 < � Q � L 2 , GWP. � If � u 0 � L 2 � � Q � L 2 , blow-up may happen. (M. Weinstein, Merle, Merle-Rapha¨ el, etc.) R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 6 / 23

  16. Solitary waves i ∂ u ∂ t + 1 2∆ u = −| u | 2 u , x ∈ R 2 . Special solution u ( t , x ) = e i ω t φ ( x ): − 1 2∆ φ + ωφ = | φ | 2 φ. A priori estimates (Pohozaev identities): 1 (multiplier ¯ 2 �∇ φ � 2 L 2 + ω � φ � 2 L 2 − � φ � 4 L 4 = 0 φ ) , L 2 = 1 (multiplier x · ∇ ¯ ω � φ � 2 2 � φ � 4 φ ) . L 4 � Nec. ω > 0. Conversely, ∃ H 1 solution if ω > 0, with exponential decay. � Any solution satisfies E ( φ ) = 0: instability by blow-up. R´ emi Carles (CNRS & Univ Rennes) Cubic-quintic Schr¨ odinger equation 7 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend