accessing localization properties of many body systems
play

Accessing localization properties of many - body systems with - PowerPoint PPT Presentation

Accessing localization properties of many - body systems with quantum Monte Carlo Fabien Alet Laboratoire de Physique Thorique Toulouse In collaboration with : David Luitz, Nicolas Laflorencie Ref. : arXiv:1308.1916 Statistical physics of


  1. Accessing localization properties of many - body systems with quantum Monte Carlo Fabien Alet Laboratoire de Physique Théorique Toulouse In collaboration with : David Luitz, Nicolas Laflorencie Ref. : arXiv:1308.1916 Statistical physics of quantum matter, Taipei, July 2013

  2. Introduction   . • Question : How much a wave - function is localized   . in a given ( computational ) basis ? | Ψ i =   .   . .   • V arious motivations : . {| i i } • Localization physics : Anderson ( single - particle, disorder ) , many - body localization • Complexity theory : how many states needed to describe correctly phenomena ? ( see variational methods, computational complexity ) • Relation to multifractal analysis in various fields ( physics, chemistry, finance... ) Stanley ( 1988 )

  3. This talk • Will concentrate on wave - functions ground - states of quantum many - body lattice problems S q 1. Introduction : Measures of localization, what to look for j = 1 j = 2 j = 3 . . . . . j = 2 n L y 2 ! 1 2. Review : results in spin chains | i i β 3. Localization and quantum Monte Carlo τ = 0 4. Preliminary results on 1d and 2d quantum spin models

  4. Measures of localization

  5. Definitions X | Ψ i = a i | i i i | a i | 2 = 1 X • Assume normalized wave - function i • Moments = typical tools for measuring localization X | a i | 4 • Historically : Inverse Participation Ratio ( IPR ) IPR = i p i = | a i | 2 • More generally, define 1 X p q Renyi entropy S q = 1 − q ln q 6 = 1 i i X Shannon entropy S 1 = lim q → 1 S q = − p i ln( p i ) i

  6. Simple expectations X | Ψ i = a i | i i • Denote by the size of configuration space H i ( 1 ∀ i ∈ 1 ... N √ N • Consider the simple wave - function a i = 0 otherwise • One simply obtains S q = ln( N ) • Scaling : S q ∝ ln( H ) : delocalized S q = O (1) : localized H = α N • Remark 1 : Many - body problem : , in general expect S q ∝ N • Remark 2 : Obviously, is basis - dependent ! S q Is there something else beyond these remarks ?

  7. Review in quantum spin chains Disclaimer : all results obtained mostly by Stéphan, Misguich, Pasquier Stéphan et al., PRB 80 , 184421 ( 2009 ) Stéphan et al., PRB 82 , 125455 ( 2010 ) Stéphan et al., PRB 84 , 195128 ( 2011 )

  8. Shannon - Renyi Entropy of spin chains • Results in 1d provide evidence for scaling: Stéphan et al. S q = a q N + universal term q + c q /N + · · · • Periodic chains : Universal term is constant : b q l q ln( N ) + ˜ • Open chains : Universal term is : b q Essentially two models considered : X i +1 + S y i S y S x i S x i +1 + ∆ S z i S z XXZ ( XX ) H = J i +1 chain i T ransverse - X σ x i σ x i +1 − h σ z H = J field Ising i chain i

  9. 1st example : periodic XX chain ( +equiv. models ) • Shannon entropy Stéphan et al. -0.46 20 e ρ = 1 / 2 carr´ hexagonal ρ = 1 / 4 Di ff erent a 1 -0.47 hexagonal ρ = 1 / 3 hexagonal ρ = 1 / 2 15 -0.48 S 1 b 1 10 S -0.49 square dimers p=1/2 carr´ e ρ = 1 / 2 -0.5 5 hexagonal ρ = 1 / 4 honeycomb p=1/4 hexagonal ρ = 1 / 3 honeycomb p=1/3 -0.51 hexagonal ρ = 1 / 2 XX chain 0 Same b 1 0 0 . 01 0 . 02 0 . 03 0 . 04 0 5 10 15 20 25 30 35 40 45 N − 1 N (1 − q ∂ q )((1 − q ) b q ) • Renyi entropy Numerical observation ln q b q = 2(1 − q ) 1 2 [ln ( n ) − 1] q

  10. The Renyi book • Replica point of view ( q half - integer ) : “Renyi book” Stéphan et al. | a i | 2 q = Z 2 q X p q X book Z q = i = Z q i i j = 1 · · · 2 q j = 1 j = 2 j = 3 The 2q half - infinite . . . . . j = 2 n Z 2 q cylinders / strips are forced book to have the same bottom → ∞ L y 2 ! 1 configuration Partition function of infinite | i i Z cylinder / strip = Normalization • Idea : Conformal field theory ( CFT ) usually good at computing ratio of partitions functions with di ff erent boundary conditions • Caution : Straight - forward replica fail !

  11. Free field calculation ( replica - free ) b q = − 1 2(ln K + ln q • Final prediction q − 1) • Agrees with XX chain Stéphan et al. 0 b 1 -0.2 -0.4 • Numerics on XXZ chain -0.6 -0.8 Lanczos M=0 Lanczos M=1/5 -1 Lanczos M=1/4 • O ff ers an easy way to compute -1.2 Lanczos M=1/2 ln R − 1 / 2 -1.4 Luttinger parameter ! 0.6 0.8 1 1.2 1.4 1.6 K − 1 / 2 = (2 − 2 / π arccos( ∆ )) 1 / 2 • Further: phase transition as a function of q

  12. T ransverse - field Ising chain X σ x i σ x i +1 − h σ z H = J i i • Single critical point in a di ff erent universality class ( c=1/2 ) h c = 1 • Two natural configurations bases : x ( spins ) and z ( field ) S ( x ) ( h ) = S ( z ) • Duality : q (1 /h ) + ln(2) q Parity h = 0 : S ( x ) S ( z ) = ln 2 = ( N − 1) ln 2 • Simple points : q q h = ∞ : S ( x ) S ( z ) = N ln 2 = 0 q q

  13. T ransverse - field Ising chain X σ x i σ x i +1 − h σ z H = J i i S ( x ) ( h ) = S ( z ) q (1 /h ) + ln(2) • Duality : q h = 0 : S ( x ) S ( z ) = ln 2 = ( N − 1) ln 2 • Simple points : q q h = ∞ : S ( x ) S ( z ) = N ln 2 = 0 q q • Another “Renyi duality” based on X | i i z/x = N 1 / 2 ( | "" · · · "i x/z ) i Most likely state equal - superposition CFT : “Fixed” state CFT : “Free” state S ( x/z ) = N ln(2) − S ( z/x ) 1 / 2 ∞

  14. Field - induced phase transition High field : 1 b ( x ) → 0 ∀ q ln(2) b ( x ) q 0.5 1 s 1 ( µ ) 1 Low field : 0.5 0 b ( x ) → ln(2) ∀ q 0 q L=8..12 L=16..20 -0.5 L=24..28 -0.5 L=30..34 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 L=34..38 ( µ -1)L Stéphan et al. 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 µ 1 /h b ( x ) Critical field : → b ∗ Non - trivial value ( at least q=1 ) q q

  15. q - induced phase transition Stéphan et al. • Now sit at critical point and vary q q acts as a relevant 0.7 ln(2) 0.7 pertubation q ( h = 1) 0.6 0.6 0.5 q > 1 : b ∗ q → ln(2) 0.4 0.5 0.3 s n ( =1) “Fixed” state 0.4 0.2 0.1 b ( x ) 0.3 q < 1 : b ∗ 0 q → 0 -1 -0.5 0 0.5 1 (n-1)L 0.25 0.2 “Free” state CICT L=4..10 CICT L=8..14 0.1 Ising chain CICT L=22..28 CICT L=38..44 q = 1 : b ∗ 1 = 0 . 2543925(5) 2d Ising triangular Triangulaire L=6..12 0 2d Ising square Carre L=6..12 0 0.5 1 1.5 2 Exactly marginal n q • Same results for models in the same universality class • ( in ) dependance on basis x basis “stable” fixed point | " , φ i = cos( φ ) | "i x + sin( φ ) | #i x b ∗ 1 ( φ ) = b ∗ 0 ≤ φ < π / 4 1 | # , φ i = � sin( φ ) | "i x + cos( φ ) | #i x φ = π / 4 = b ∗ 1 − ln(2) z basis “unstable”

  16. Summary of 1d results • Periodic chains: S q = a q N + b q + c q /N + · · · ln q q ≤ q c = d 2 / 2 κ r 2 Luttinger liquids b q = ln R − 2( q − 1) b q>q c = q ln( R ) − ln( d ) q − 1  0 q < 1   Ising universality class b ∗ ( x ) = 0 . 25439 · · · q = 1 q  ln(2) q > 1  • Open chains ( not shown ) : S q = a q N + l q ln( N ) + ˜ b q + c q /N · · · q q − 1( R 2 / 4 − 1 / 4) l q<q c = − 1 / 4 l q>q c = LL : Ising : ... • How much survives beyond the 1d tractable ( exact ) cases ?

  17. Localization and Monte Carlo arXiv:1308.1916

  18. Measuring Sq with Monte Carlo • Importance sampling actually does the exact job ! | i i • Probability of seeing configuration in Monte Carlo Classical MC Quantum MC β | i i = | "##"#"i τ = 0 β →∞ p MC / h i | e − β H | i i a 2 i = p i p MC ∝ e − β E i = i i p i = h | i ih i | i • Measure Histogram and normalize to obtain all H ( | i i ) p i S q and therefore all

  19. Further computational tricks • Replica trick for integer : Simulate q independent copies q ≥ 2 · · · | i q i = | "##"#"i | i 2 i = | "#"##"i | i 1 i = | "##"#"i X p q i = h δ | i 1 i , | i 2 i , ··· , | i q i i Estimator for i S ∞ • is easily measured as S ∞ = − ln( p max ) • If possible, do simulations in di ff erent basis and use S ( x/z ) = N ln(2) − S ( z/x ) 1 / 2 ∞

  20. d=1 quantum systems arXiv:1308.1916

  21. First example : spin ladders in a field X X S i, 1 · S i, 2 − hS z H = S i, α · S i +1 , α + J ⊥ J ⊥ i i, α =1 , 2 i 2 =7x10 -7 ) 0.46146*N - 0.5*[1+ln(1.1474))] + 0.6345/N ( χ 2 =2x10 -8 ) 0.43238*N - 0.5*[1+ln(0.81687)] + 0.252/N ( χ J rung = 4 10 J rung = 1 Intercept gives S 1 K ' 1 . 15 5 ( J ⊥ = 1) S z = 1 / 2 K ' 0 . 82 ( J ⊥ = 4) 0 0 5 10 15 20 25 N • Luttinger parameter extracted already on very small sizes ! • Agrees with independent estimates Hikihara, PRB 2001

  22. Discrete symmetry breaking d>1 arXiv:1308.1916

  23. 2d transverse - field Ising model X X σ x i σ x σ z H = J j − h i h i,j i i • Quantum phase transition between a ferromagnet and a polarized phase at h c ' 3 . 044 J • Most simulations in the z basis ( a few corroborative results in the x basis too ) , up to N = 24 2 = 576 • QMC data well fitted by S q = a q N + b q + c q /N + · · ·

  24. 2d transverse - field Ising model • QMC data well fitted by S q = a q N + b q + c q /N + · · · 0.2 2 -10 2 N=4 2 -12 2 0 N=6 2 -14 2 N=8 high - field 2 -16 2 N=10 -0.2 2 -18 2 N=12 b ( z ) → 0 2 -20 2 N=14 b ∞ q 2 -22 2 -0.4 N=16 2 -24 2 N=18 -0.6 low - field -0.8 b ( z ) → − ln(2) q -1 1.5 2 2.5 3 3.5 4 h Marked anomaly close to h c

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend