strichartz inequalities on non compact manifolds
play

Strichartz inequalities on non compact manifolds Jean-Marc Bouclet - PowerPoint PPT Presentation

Strichartz inequalities on non compact manifolds Jean-Marc Bouclet Institut de Mathmatiques de Toulouse Rencontre Nosevol #3, 9 avril 2014, Rennes What are Strichartz inequalities ? Schrdinger-Strichartz estimates i t u = u =


  1. Strichartz inequalities on non compact manifolds Jean-Marc Bouclet Institut de Mathématiques de Toulouse Rencontre Nosevol #3, 9 avril 2014, Rennes

  2. What are Strichartz inequalities ? Schrödinger-Strichartz estimates i ∂ t u = ∆ u = ⇒ || u || L p ([ 0 , T ] , L q ) � || u ( 0 ) || L 2 if p , q ≥ 2 satisfy the admissibilty condition 2 p + n q = n p , q ≥ 2 , 2 . Wave-Strichartz estimates ∂ 2 t u = ∆ u = ⇒ || u || L p ([ 0 , T ] , L q ) � || u ( 0 ) || H γ + || ∂ t u ( 0 ) || H γ − 1 under the (sufficient) condition on p , q ≥ 2 that � 1 � 2 p + n − 1 = n − 1 γ = n + 1 2 − 1 , q 2 2 q [Strichartz,Ginibre-Velo]

  3. An explicit example Consider a wave packet centered at ( y , ζ ) � i � h ζ · ( x − y ) − | x − y | 2 G h ( x ) = π − n / 4 h − κ n 2 exp 2 h 2 κ By explicit computation: � � � � h κ n − | x − y − 2 t ζ/ h | 2 � � � = π − n 4 h − n κ � e it ∆ G h 4 exp 2 2 ( h 2 κ + 4 t 2 h − 2 κ ) ( h 4 κ + 4 t 2 ) n and � � � � � h 2 κ + 4 t 2 h − 2 κ � n � � � � � � q − 1 1 � e it ∆ G h � � � x ) = c qn 2 2 L q ( R n 2 q − n n n 4 ( 2 / q ) 2 q . Using the admissibility condition: where c qn = π � T � 2 Th − 2 κ � � � � p 1 � � � � L q dt = c p � e it ∆ G h 1 + τ 2 d τ. � � � qn 0 0

  4. Why are they useful ? Non linear Cauchy problem at low regularity , e.g. i ∂ t u + ∆ u = ±| u | ν − 1 u , u | t = 0 = u 0 ∈ L 2 ( R 2 ) , 1 < ν < 3 . Rewrite it as an integral equation � t u ( t ) = e it ∆ u 0 ∓ i e i ( t − s )∆ | u ( s ) | ν − 1 u ( s ) ds 0 and use a fixed point argument in a suitable closed ball of p = 2 ν + 2 X T := C ([ 0 , T ] , L 2 ) ∩ L p ([ 0 , T ] , L q ) , ν − 1 , q = ν + 1 . Strichartz inequalities allow to show that e it ∆ u 0 ∈ X T , and that � t e i ( t − s )∆ | v ( s ) | ν − 1 v ( s ) ds is a contraction v �→ 0 for T small enough (this uses inhomogeneous inequalities).

  5. Estimates in non Euclidean geometries Wave equation: weaker dispersion but finite propagation speed 1. M smooth with positive injectivity radius : same estimates (local in time) as on R n [Kapitanski] 2. M with boundary : Additional losses in general [Ivanovici-Lebeau-Planchon]. Unavoidable at least if if � � q > 4 and n ∈ { 2 , 3 , 4 } (additional loss of 1 1 4 − 1 6 q [Ivanovici]) 3. low regularity metrics : additional losses in general below C 2 regularity [Bahouri-Chemin, Tataru, Smith-Tataru]

  6. Estimates in non Euclidean geometries (continued) Schrödinger equation: one expects possible losses || u || L p ([ 0 , T ] , L q ( M )) � || u ( 0 ) || H σ ( M ) := || ( 1 − ∆) σ/ 2 u ( 0 ) || L 2 ( M ) (infinite propagation speed!) 1. M closed : σ = 1 p [Burq-Gérard-Tzvetkov] (optimal on S 3 ), but for M = T 2 and p = q = 4, any σ > 0 [Bourgain]! 2. M compact with boundary : Additional losses in general 3 4 ( σ = 2 p [Anton], 3 p [Blair,Smith,Sogge]) 3. M non compact with large ends : No loss if no (or little) trapping; either for M asymp. flat or hyperbolic (including: outside a convex [Ivanovici] or polygonal obstacles [Baskin-Marzuola-Wunsch])

  7. About the proof of Strichartz estimates The classical strategy is to prove L 1 → L ∞ estimates for the evolution and use the following type of abstract result. Proposition. Assume � �� � �� � U h ( t ) � ≤ B h , | t | ≤ T L 2 → L 2 � �� � U h ( t ) U h ( s ) ∗ � �� D h � ≤ | t − s | δ , | t | , | s | ≤ T L 1 → L ∞ Then, if p > 2, q ≥ 2 and � 1 � 2 − 1 = 1 δ p , q we have � �� �� � 1 2 − 1 2 � U h ( · ) f � q 1 q L p ([ 0 , T ] , L q ) � B h D || f || L 2 h

  8. About the proof of Strichartz estimates (continued) Up to a Littlewood-Paley argument, to localize spectrally the problem (with ϕ ∈ C ∞ 0 ( 0 , + ∞ ) ), the usual estimates follow from: Schrödinger � �� � ϕ ( − h 2 ∆) e i ( t − s )∆ � �� L 1 ( M ) → L ∞ ( M ) � | t − s | − n � 2 Wave � � − ∆ � � √ � � � � L 1 ( M ) → L ∞ ( M ) � h − n + 1 2 | t − s | − n − 1 � ϕ ( − h 2 ∆) e i ( t − s ) � � � 2 on suitable time scales. Typically, if ̺ inj = injectivity radius, | t | , | s | � ̺ inj (Wave) | t | , | s | � h × ̺ inj (Schrödinger)

  9. Problem: what happens if ̺ inj vanishes ? ◮ are there still Strichartz estimates ? ◮ if yes, are there additional losses ? ◮ if yes, are they unavoidable ? We address these questions for (smooth) surfaces with cusps .

  10. Surfaces with cusps ◮ Model for the cusp: G 0 = dr 2 + e − 2 φ ( r ) d θ 2 , S 0 = [ r 0 , ∞ ) × A , A = a union of circles and � ∞ e − φ ( r ) dr < ∞ i . e . aera ( S 0 ) < ∞ r 0 We also assume that φ ( j ) is bounded for all j ≥ 1. ◮ More generally, we can consider ( S , G ) with ◦ ◦ S = K⊔ S 0 , with K compact and G = G 0 on S 0 . Example: S = R × S 1 with G = dr 2 + d θ 2 / cosh 2 ( r )

  11. Operators and measures on S 0 ∆ 0 = ∂ 2 ∂ r 2 − φ ′ ( r ) ∂ ∂ r + e 2 φ ( r ) ∆ A , d vol 0 = e − φ ( r ) drd A ∆ 0 is symmetric on L 2 G 0 := L 2 ( S 0 , d vol 0 ) . We also let � �� �� � �� � � �� � ψ � � ( 1 − ∆ 0 ) σ/ 2 ψ � = H σ L 2 G 0 G 0 To use the standard Lebesgue measure, it is useful to consider G 0 ∋ ψ �→ u := U ψ = e − φ ( r ) / 2 ψ ∈ L 2 := L 2 ( S 0 , drd A ) . U : L 2 P := U ( − ∆ 0 ) U ∗ = − ∂ 2 ∂ r 2 − e 2 φ ( r ) ∆ A + w ( r ) , where w = ( φ ′ 2 − 2 φ ′′ ) / 4. P is symmetric on L 2 . Note also that � �� �� � � � 1 2 − 1 � e φ ( r ) � || ψ || L q G 0 = u q L q

  12. Projection away from zero modes We let π 0 = orthogonal projection on Ker L 2 ( A ) (∆ A ) and define Π c = I ⊗ ( I − π 0 ) Π = I ⊗ π 0 , seen as operators (orthogonal projections) on both L 2 (( r 0 , ∞ ) , dr ) ⊗ L 2 ( A , d A ) L 2 ≈ L 2 (( r 0 , ∞ ) , e − φ ( r ) dr ) ⊗ L 2 ( A , d A ) L 2 ≈ G 0 If e 0 , . . . , e k 0 − 1 is an orthonormal basis of Ker L 2 ( A ) (∆ A ) , �� � � Π ψ = e k ( α ) ψ ( r , α ) d A ⊗ e k A k < k 0

  13. Zero angular modes ⇒ No Strichartz estimates Theorem 1 Let p ≥ 1, q > 2 and σ ≥ 0. 1. There is a sequence ( ψ n ) n ≥ 0 in H σ G 0 ∩ Ran (Π) such that || ψ n || L q G 0 sup = + ∞ . || ψ n || H σ n ≥ 0 G 0 2. There is a sequence ( ψ n ) n ≥ 0 of in H σ G 0 ∩ Ran (Π) such that || cos ( t √− ∆ 0 ) ψ n || L p ([ 0 , 1 ] t ; L q G 0 ) sup = + ∞ . || ψ n || H σ n ≥ 0 G 0 3. Consider e φ ( r ) = e r and r 0 = 0. There is a sequence ( ψ n ) n ≥ 0 in H σ G 0 ∩ Ran (Π) such that || e it ∆ ψ n || L p ([ 0 , 1 ] t ; L q G 0 ) = + ∞ . sup || ψ n || H σ n ≥ 0 G 0

  14. Wave-Strichartz estimates at infinity away from zero angular modes Let r 1 > r 0 and 1 [ r 1 , ∞ ) ( r ) be a localization inside the cusp. Theorem 2 Let ( p , q ) be sharp wave admissible in dimension two 2 p + 1 q = 1 2 and set � 1 � σ w = 3 2 − 1 . 2 q Then, if we set √ √ − ∆) ψ 0 + sin ( t − ∆) Ψ( t ) = cos ( t √ ψ 1 , − ∆ we have � �� �� � � Π c 1 [ r 1 , ∞ ) ( r )Ψ � G 0 ) � || ψ 0 || H σ w + || ψ 1 || H σ w − 1 L p ([ 0 , 1 ]; L q G G

  15. Schrödinger-Strichartz estimates at infinity away from zero angular modes Theorem 3 Let ( p , q ) be Schrödinger admissible � 1 � 1 p + 1 q = 1 σ S = 1 2 − 1 = 1 2 , 2 q 2 p Fix ϕ ∈ C ∞ 0 ( R ) . Then, if we set Ψ h ( t ) = e it ∆ ϕ ( − h 2 ∆) ψ we have � �� �� � � Π c 1 [ r 1 , ∞ ) ( r )Ψ h � G 0 ) � || ψ || H σ S L p ([ 0 , h ]; L q G Corollary Let ( p , q ) be a Schrödinger admissible pair. If we set Ψ( t ) = e it ∆ ψ we have �� � � �� � Π c 1 [ r 1 , ∞ ) ( r )Ψ � G 0 ) � || ψ || L p ([ 0 , 1 ]; L q 3 2 p H G

  16. Separation of variables Using an orthonormal eigenbasis ( e k ) k ≥ 0 of ∆ A , ∆ A e k = − µ 2 k e k we have a unitary equivalence � � L 2 � � L 2 ∋ u �→ ( u k ) k ∈ ( r 0 , ∞ ) , dr , u k ( r ) = e k ( α ) u ( r , α ) d A k ≥ 0 Through this mapping, for any bounded Borel function f , we have � f ( P ) u = f ( p k ) u k ⊗ e k k where k e 2 φ ( r ) + w ( r ) . p k = − ∂ 2 r + µ 2

  17. Elliptic estimates away from zero angular modes Proposition Let χ ∈ C ∞ 0 ( R ) such that χ ≡ 1 near r 0 . Then for any N > 0 � � r Π c ( 1 − χ ( r ))( 1 − ∆ 0 ) − N � � � � � � � ( e 2 φ ( r ) ∆ A ) N 1 ∂ N 2 < ∞ � � � L 2 G 0 → L 2 G 0 provided that 2 N 1 + N 2 ≤ 2 N . In particular, for N large enough � � � e N φ ( r ) Π c ( 1 − ∆ 0 ) − N � � � � � � < ∞ � � � L 2 G 0 → L ∞ G 0

  18. Localization in frequency: Littlewood-Paley decomposition Consider a dyadic partition of unity � ϕ ( − h 2 ∆ 0 ) I = ϕ 0 ( − ∆ 0 ) + h 2 = 2 − n with ϕ 0 ∈ C ∞ 0 ( R ) , ϕ ∈ C ∞ 0 ( 0 , + ∞ ) Proposition. For all q ∈ [ 2 , ∞ ) and χ ∈ C ∞ 0 ( R ) such that χ ≡ 1 near r 0 , �� � 1 � �� � �� 2 � 2 || Π c ( 1 − χ ) ψ || L q � Π c ( 1 − χ ) ϕ ( − h 2 ∆ 0 ) ψ G 0 � + || ψ || L 2 L q G 0 G 0 h

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend