strichartz inequalities for waves in a strictly convex
play

Strichartz inequalities for waves in a strictly convex domain Oana - PowerPoint PPT Presentation

Strichartz inequalities for waves in a strictly convex domain Oana Ivanovici ( ), Richard Lascar ( ), Gilles Lebeau ( ) and Fabrice Planchon ( ) ( ) Universit e Nice Sophia Antipolis ( ) Universit e Paris 7


  1. Strichartz inequalities for waves in a strictly convex domain Oana Ivanovici ( † ), Richard Lascar ( ‡ ), Gilles Lebeau ( † ) and Fabrice Planchon ( † ) ( † ) Universit´ e Nice Sophia Antipolis ( ‡ ) Universit´ e Paris 7 lebeau@unice.fr In honor of Johannes SJOSTRAND 25 September, 2013 Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 1 / 26

  2. Outline Result 1 The parametrix construction 2 Dispersive estimates 3 Interpolation estimates 4 Optimality of the result 5 Comments 6 Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 2 / 26

  3. Outline Result 1 The parametrix construction 2 Dispersive estimates 3 Interpolation estimates 4 Optimality of the result 5 Comments 6 Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 3 / 26

  4. Strichartz in R d Dispersion � χ ( hD t ) e ± it √ x ≤ Ch − d min (1 , ( h |△| ( δ a ) � L ∞ t ) α d ) (1.1) Strichartz ( ∂ 2 t − △ ) u = 0 h β � χ ( hD t ) u � L q x ) ≤ C ( � u (0 , x ) � L 2 + � hD t u (0 , x ) � L 2 ) (1.2) t ∈ [0 , T ] ( L r q ∈ ]2 , ∞ [ , r ∈ [2 , ∞ ] 1 q = α d (1 2 − 1 β = ( d − α d )(1 2 − 1 r ) , r ) with α d = d − 1 in the free space R d 2 Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 4 / 26

  5. Main result Let ( M , g ) be a Riemannian manifold. Let Ω be an open relatively compact subset of M with smooth boundary ∂ Ω. We assume that Ω is Strictly Convex in ( M , g ), i.e any (small) piece of geodesic tangent to ∂ Ω is exactly tangent at order 2 and lies outside Ω. We denote by △ the Laplacian associated to the metric g on M . Theorem For solutions of the mixed problem ( ∂ 2 t − △ ) u = 0 on R t × Ω and u = 0 on R t × ∂ Ω , the Strichartz inequalities hold true with α d = d − 1 − 1 6 , d = dim ( M ) 2 Remark This was proved by M. Blair, H.Smith and C.Sogge in the case d = 2 for arbitrary boundary (i.e without convexity assumption). The above theorem improves all the known results for d ≥ 3 . Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 5 / 26

  6. Outline Result 1 The parametrix construction 2 Dispersive estimates 3 Interpolation estimates 4 Optimality of the result 5 Comments 6 Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 6 / 26

  7. The problem is local near any point p 0 of the boundary. In geodesic coordinates normal to ∂ Ω and after conjugation by a non vanishing smooth function e ( x , y ), one has for ( x , y ) ∈ R × R d − 1 near (0 , 0) △ = e − 1 · △ · e = ∂ 2 ˜ x + R ( x , y , ∂ y ) Ω = { x > 0 } , p 0 = ( x = 0 , y = 0) 0n the boundary, in geodesic coordinates centered at y = 0, one has � ∂ 2 y j + O ( y 2 ) R 0 ( y , ∂ y ) = R (0 , y , ∂ y ) = Let R 1 ( y , ∂ y ) = ∂ x R (0 , y , ∂ y ) = � R j , k 1 ( y ) ∂ y j ∂ y k . The quadratic form � R j , k 1 ( y ) η j η k is positively define. We introduce the Model Laplacian � � � R j , k △ M = ∂ 2 � ∂ 2 x + y j + x 1 (0) ∂ y j ∂ y k Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 7 / 26

  8. Set ρ ( ω, η ) = ( η 2 + ω q ( η ) 2 / 3 ) 1 / 2 , � R j , k q ( η ) = 1 (0) η j η k The following theorem is due to Melrose-Taylor, Eskin, Zworski, ... Theorem There exists two phases ψ ( x , y , η, ω ) homogeneous of degree 1 , ζ ( x , y , η, ω ) homogeneous of degree 2 / 3 , and symbols p 0 , 1 ( x , y , η, ω ) of degree 0 ( ω is 2 / 3 homogeneous, and | ω | η | − 2 / 3 | is small) such that G ( x , y ; η, ω ) = e i ψ � � p 0 Ai ( ζ ) + xp 1 | η | − 1 / 3 Ai ′ ( ζ ) satisfy − ˜ △ G = ρ 2 G + O C ∞ ( | η | −∞ ) near ( x , y ) = (0 , 0) ζ = − ω + x | η | 2 / 3 e 0 ( x , y , η, ω ) with p 0 and e 0 elliptic near any point (0 , 0 , η, 0) with η ∈ R d − 1 \ 0 . Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 8 / 26

  9. Let ( X − x ) u + ( Y − y ) v + Γ( X , Y , u , v ) be a generating function for a (Melrose) canonical transformation χ M such that χ M ( x = 0 , ξ 2 + η 2 + xq ( η ) = 1) = ( X = 0 , Ξ 2 + R ( X , Y , Θ) = 1) near Σ 0 = { ( x , y , ξ, η ) , x = 0 , y = 0 , ξ = 0 , | η | = 1 } . One has Γ(0 , Y , u , v ) is independent of u There exists a symbol q ( x , y , η, ω, σ ) of degree 0 ( σ is 1 / 3 homogeneous) compactly supported near N 0 = { x = 0 , y = 0 , ω = 0 , σ = 0 , η ∈ R d − 1 \ 0 } and elliptic on N 0 such that e i ( y η + σ 3 / 3+ σ ( xq ( η ) 1 / 3 − ω )+ ρ Γ( x , y , σ q ( η )1 / 3 G ( x , y ; η, ω ) = 1 � , η ρ )) q d σ ρ 2 π Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 9 / 26

  10. Let G ( t , x , y ; a ) be the Green function solution of the mixed problem, with a ∈ ]0 , a 0 ], a 0 > 0 small ( ∂ 2 t − ˜ △ ) G = 0 in x > 0 , G| x =0 = 0 G| t =0 = δ x = a , y =0 , ∂ t G| t =0 = 0 Definition Let χ ( x , t , y , hD t , hD y ) be a h-pseudo differential (tangential) operator of degree 0 , compactly supported near Σ 0 = { x = 0 , t = 0 , y = 0 , τ = 1 , | η | = 1 } and equal to identity near ˜ ˜ Σ 0 . A ”parametrix” is an approximation (near { x = 0 , y = 0 , t = 0 } ) mod 0 C ∞ ( h ∞ ) , and uniformly in a ∈ ]0 , a 0 ] of χ ( x , t , y , hD t , hD y )( G ( . ; a )) . Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 10 / 26

  11. Set ω = h − 2 / 3 α . Recall ρ ( α, θ ) = ( θ 2 + α q ( θ ) 2 / 3 ) 1 / 2 . Let Φ( x , y , θ, α, s ) be the phase function Φ = y θ + s 3 / 3 + s ( xq ( θ ) 1 / 3 − α ) + ρ ( α, θ )Γ( x , y , sq ( θ ) 1 / 3 θ ρ ( α, θ ) , ρ ( α, θ )) and let q h ( x , y , θ, α, s ) = h − 1 / 3 q ( x , y , h − 1 θ, h − 2 / 3 α, h − 1 / 3 s ) Then J ( f )( x , y ) = 1 � i h (Φ − y ′ θ − t ′ α ) q h f ( y ′ , t ′ ) dy ′ dt ′ d θ d α ds e 2 π is a semiclassical OIF associated to a canonical transformation χ such that χ ( { y ′ = 0 , t ′ = 0 , | η ′ | = 1 , τ ′ = 0 } ) = { y = 0 , x = 0 , | η | = 1 , ξ = 0 } Moreover, J is elliptic on the above set and − h 2 ˜ △ J ( f ) = J ( ρ 2 ( hD t ′ , hD y ′ ) f ) mod O C ∞ ( h ∞ ) Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 11 / 26

  12. Airy-Poisson summation formula Let A ± ( z ) = e ∓ i π/ 3 Ai ( e ∓ i π/ 3 z ). One has Ai ( − z ) = A + ( z ) + A − ( z ). For ω ∈ R , set L ( ω ) = π + i log( A − ( ω ) A + ( ω )) The function L is analytic, strictly increasing, L (0) = π/ 3, lim ω →−∞ L ( ω ) = 0, L ( ω ) ≃ 4 ω 3 / 2 ( ω → + ∞ ), and one has ∀ k ∈ N ∗ 3 � ∞ L ′ ( ω k ) = Ai 2 ( x − ω k ) dx L ( ω k ) = 2 π k ⇔ Ai ( − ω k ) = 0 , 0 Lemma The following equality holds true in D ′ ( R ω ) . 1 e − iNL ( ω ) = 2 π � � L ′ ( ω k ) δ ω = ω k N ∈ Z k ∈ N ∗ Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 12 / 26

  13. Let g h , a ( y ′ , t ′ ) such that J ( g h , a ) − 1 2 δ x = a , y =0 = R with WF h ( R ) ∩ W = ∅ , where W is a fixed neighborhood of { ( x = 0 , y = 0 , ξ = 0 , η ) , | η | = 1 } . For ω ∈ R , set (recall α = h 2 / 3 ω ) K ω ( f )( t , x , y ) = h 2 / 3 � i h ( t ρ ( h 2 / 3 ω,θ )+Φ − y ′ θ − t ′ h 2 / 3 ω ) q h f ( y ′ , t ′ ) dy ′ dt ′ d θ ds e 2 π � One has J ( f ) = R K ω ( f ) | t =0 d ω . Finally, set 1 � e − iNL ( ω ) , K ω ( g h , a ) > D ′ ( R ) = P h , a ( t , x , y ) = 2 π � < L ′ ( ω k ) K ω k ( g h , a ) N ∈ Z k ∈ N ∗ Proposition P h , a ( t , x , y ) is a parametrix. The proof uses the left formula for a ≥ h 2 / 3 − ǫ , and the right formula for a ≤ h 4 / 7+ ǫ . Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 13 / 26

  14. Outline Result 1 The parametrix construction 2 Dispersive estimates 3 Interpolation estimates 4 Optimality of the result 5 Comments 6 Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 14 / 26

  15. △ = △ M , with q ( η ) = | η | 2 (Friedlander model), where The special case ˜ one has of course Γ = 0, has been studied by Ivanovici-Lebeau-Planchon in Dispersion for waves inside strictly convex domains I: the Friedlander model case. (http://arxiv.org/abs/1208.0925 and to appear in Annals of Maths). The analysis of phase integrals are (essentially) the same in the general case, and leads to the following result. Theorem 1 , ( h � d − 2 � |P h , a ( t , x , y ) | ≤ Ch − d min 2 C t ) (3.1) C = ( h t ) 1 / 2 + a 1 / 8 h 1 / 4 for a ≥ h 2 / 3 − ǫ C = ( h t ) 1 / 3 for a ≤ h 1 / 3+ ǫ Corollary Strichartz holds true in any dimension d ≥ 2 with α d = d − 1 − 1 2 4 Gilles Lebeau (Universit´ e Nice Sophia Antipolis) Strichartz 25 September, 2013 15 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend