the continuum limit of distributed dislocations
play

The continuum limit of distributed dislocations Cy Maor Institute - PowerPoint PPT Presentation

The continuum limit of distributed dislocations Cy Maor Institute of Mathematics, Hebrew University Conference on non - linearity, transport, physics, and patterns Fields Institute, October 2014 Di ff erent Models for


  1. The continuum limit of distributed dislocations Cy Maor � Institute of Mathematics, Hebrew University � � Conference on non - linearity, transport, physics, and patterns � Fields Institute, October 2014 


  2. Di ff erent Models for Dislocations

  3. Di ff erent Models for Dislocations • A single dislocation

  4. Di ff erent Models for Dislocations • A single dislocation • V olterra ( ~1900 )

  5. Di ff erent Models for Dislocations • A single dislocation • V olterra ( ~1900 ) • Riemannian manifold with singularities.

  6. Di ff erent Models for Dislocations • A single dislocation • V olterra ( ~1900 ) • Riemannian manifold with singularities. • Burgers vector

  7. Di ff erent Models for Dislocations • A single dislocation • Distributed dislocations • V olterra ( ~1900 ) • Riemannian manifold with singularities. • Burgers vector

  8. Di ff erent Models for Dislocations • A single dislocation • Distributed dislocations • V • Nye, Bilby, etc. ( ~1950 ) olterra ( ~1900 ) • Riemannian manifold with singularities. • Burgers vector

  9. Di ff erent Models for Dislocations • A single dislocation • Distributed dislocations • V • Nye, Bilby, etc. ( ~1950 ) olterra ( ~1900 ) • Riemannian manifold • Smooth manifold with with singularities. a torsion field ( =Burgers vector • Burgers vector density ) .

  10. Di ff erent Models for Dislocations • A single dislocation • Distributed dislocations • V • Nye, Bilby, etc. ( ~1950 ) olterra ( ~1900 ) • Riemannian manifold • Smooth manifold with with singularities. a torsion field ( =Burgers vector • Burgers vector density ) . How to bridge between the descriptions? What kind of homogenization process yields a torsion field from singularities?

  11. Di ff erent Models for Dislocations • A single dislocation • Distributed dislocations • V • Nye, Bilby, etc. ( ~1950 ) olterra ( ~1900 ) • Riemannian manifold • Smooth manifold with with singularities. a torsion field ( =Burgers vector • Burgers vector density ) . How to bridge between the descriptions? What kind of homogenization process yields a torsion field from singularities? A new limit concept in di ff erential geometry!

  12. Continuum Limit of Dislocations

  13. Continuum Limit of Dislocations • Overview:

  14. Continuum Limit of Dislocations • Overview: • What is an edge - dislocation?

  15. Continuum Limit of Dislocations • Overview: • What is an edge - dislocation? • Construction of manifolds with many dislocations.

  16. Continuum Limit of Dislocations • Overview: • What is an edge - dislocation? • Construction of manifolds with many dislocations. • Dislocations become denser — what does converge?

  17. Continuum Limit of Dislocations • Overview: • What is an edge - dislocation? • Construction of manifolds with many dislocations. • Dislocations become denser — what does converge? • Connection to the classical model of distributed dislocations.

  18. An edge - dislocation p + p − p − $ $ $ $ 2 θ 2 θ d

  19. An edge - dislocation • Remove a sector of angle 2 𝜄 , and glue the edges ( a cone ) . p + p − p − $ $ $ $ 2 θ 2 θ d

  20. An edge - dislocation • Remove a sector of angle 2 𝜄 , and glue the edges ( a cone ) . • Choose a point at distance d from the tip of the cone, cut a ray from it, and insert the sector into the cut. p + p − p − $ $ $ $ 2 θ 2 θ d

  21. An edge - dislocation • Remove a sector of angle 2 𝜄 , and glue the edges ( a cone ) . • Choose a point at distance d from the tip of the cone, cut a ray from it, and insert the sector into the cut. • A simply connected metric space, a smooth manifold outside the dislocation line [ p - ,p + ] . p + p − p − $ $ $ $ 2 θ 2 θ d

  22. The building block b A D d p − p + a a + ε B C b

  23. The building block • Encircle the dislocation line with four straight lines with right angles between them, obtaining a “rectangle”. b A D d p − p + a a + ε B C b

  24. The building block • Encircle the dislocation line with four straight lines with right angles between them, obtaining a “rectangle”. • Denote the lengths of these lines by a , b , b , and a+ ε , where is the dislocation magnitude . ε = 2 d sin θ b A D d p − p + a a + ε B C b

  25. Manifolds with many dislocations b a / n + ε / n 2 a / n + 2 ε / n 2 a / n + 3 ε / n 2 a / n + ε / n · · · . . . . . . a a + ε . . . . . . · · · b / n b / n b / n b / n b

  26. Manifolds with many dislocations • Glue together n 2 building blocks, such that: b a / n + ε / n 2 a / n + 2 ε / n 2 a / n + 3 ε / n 2 a / n + ε / n · · · . . . . . . a a + ε . . . . . . · · · b / n b / n b / n b / n b

  27. Manifolds with many dislocations • Glue together n 2 building blocks, such that: • Each with the same cone angle 2 𝜄 and with dislocation magnitude ε /n 2 . b a / n + ε / n 2 a / n + 2 ε / n 2 a / n + 3 ε / n 2 a / n + ε / n · · · . . . . . . a a + ε . . . . . . · · · b / n b / n b / n b / n b

  28. Manifolds with many dislocations • Glue together n 2 building blocks, such that: • Each with the same cone angle 2 𝜄 and with dislocation magnitude ε /n 2 . • The boundary consists of straight lines of lengths a , b , b , and a+ ε . b a / n + ε / n 2 a / n + 2 ε / n 2 a / n + 3 ε / n 2 a / n + ε / n · · · . . . . . . a a + ε . . . . . . · · · b / n b / n b / n b / n b

  29. Manifolds with many dislocations • Glue together n 2 building blocks, such that: • Each with the same cone angle 2 𝜄 and with dislocation magnitude ε /n 2 . • The boundary consists of straight lines of lengths a , b , b , and a+ ε . • The rectangular properties of the blocks ensure us that the gluing lines and corners are smooth. b a / n + ε / n 2 a / n + 2 ε / n 2 a / n + 3 ε / n 2 a / n + ε / n · · · . . . . . . a a + ε . . . . . . · · · b / n b / n b / n b / n b

  30. Metric Convergence

  31. Metric Convergence How do these manifolds M n look like when n →∞ ?

  32. Metric Convergence How do these manifolds M n look like when n →∞ ? Theorem: The sequence M n converges in the Gromov - Hausdor ff sense, to M , a sector of a flat annulus whose boundary consists of curves of lengths a , b , b , and a+ ε .

  33. Metric Convergence How do these manifolds M n look like when n →∞ ? Theorem: The sequence M n converges in the Gromov - Hausdor ff sense, to M , a sector of a flat annulus whose boundary consists of curves of lengths a , b , b , and a+ ε . b a / n + ε / n 2 a / n + 2 ε / n 2 a / n + 3 ε / n 2 a / n + ε / n · · · . . . . . . a a + ε . . . . . . b · · · b / n b / n b / n b / n b a + ε a ε / b b

  34. Metric Convergence Gromov - Hausdor ff convergence: � GH � � � � if there exist bijections � M n → M − − T n : A n ⊂ M n → B n ⊂ M � between δ n - nets A n and B n ( δ n → 0 ) such that b a / n + ε / n 2 a / n + 2 ε / n 2 a / n + 3 ε / n 2 a / n + ε / n · · · . . . . . . a a + ε . . . . . . b · · · b / n b / n b / n b / n b a + ε a ε / b b

  35. Metric Convergence Gromov - Hausdor ff convergence: � GH � � � � if there exist bijections � M n → M − − T n : A n ⊂ M n → B n ⊂ M � between δ n - nets A n and B n ( δ n → 0 ) such that dis T n = sup | d M n ( x, y ) − d M ( T n ( x ) , T n ( y )) | → n →∞ 0 x,y ∈ A n b a / n + ε / n 2 a / n + 2 ε / n 2 a / n + 3 ε / n 2 a / n + ε / n · · · . . . . . . a a + ε . . . . . . b · · · b / n b / n b / n b / n b a + ε a ε / b b

  36. What else converges? b a / n + ε / n 2 a / n + 2 ε / n 2 a / n + 3 ε / n 2 a / n + ε / n · · · . . . . . . a a + ε . . . . . . b · · · b / n b / n b / n b / n b a + ε a ε / b b

  37. What else converges? • A n consists of geodesics ( straight lines ) . b a / n + ε / n 2 a / n + 2 ε / n 2 a / n + 3 ε / n 2 a / n + ε / n · · · . . . . . . a a + ε . . . . . . b · · · b / n b / n b / n b / n b a + ε a ε / b b

  38. What else converges? • A n consists of geodesics ( straight lines ) . • B n does not. b a / n + ε / n 2 a / n + 2 ε / n 2 a / n + 3 ε / n 2 a / n + ε / n · · · . . . . . . a a + ε . . . . . . b · · · b / n b / n b / n b / n b a + ε a ε / b b

  39. What else converges? • A n consists of geodesics ( straight lines ) . • B n does not. � Or does it? b a / n + ε / n 2 a / n + 2 ε / n 2 a / n + 3 ε / n 2 a / n + ε / n · · · . . . . . . a a + ε . . . . . . b · · · b / n b / n b / n b / n b a + ε a ε / b b

  40. What else converges? b a / n + ε / n 2 a / n + 2 ε / n 2 a / n + 3 ε / n 2 a / n + ε / n · · · ( ∂ r , r − 1 ∂ ϕ ) . . . . . . a a + ε . . . . . . b · · · b / n b / n b / n b / n b a + ε ( ∂ x , ∂ y ) a ε / b b

  41. What else converges? • A n consists of geodesics w.r.t. the canonical ( Levi - Civita ) parallel - transport on M n . b a / n + ε / n 2 a / n + 2 ε / n 2 a / n + 3 ε / n 2 a / n + ε / n · · · ( ∂ r , r − 1 ∂ ϕ ) . . . . . . a a + ε . . . . . . b · · · b / n b / n b / n b / n b a + ε ( ∂ x , ∂ y ) a ε / b b

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend