on nonlinear conservation laws with nonlocal diffusion
play

On nonlinear conservation laws with nonlocal diffusion term Franz - PowerPoint PPT Presentation

On nonlinear conservation laws with nonlocal diffusion term Franz Achleitner 1 Sabine Hittmeir 1 Christian Schmeiser 2 1 Vienna University of Technology 2 University of Vienna Padova, June 2012 financial support by the Austrian Science Fund


  1. On nonlinear conservation laws with nonlocal diffusion term Franz Achleitner 1 Sabine Hittmeir 1 Christian Schmeiser 2 1 Vienna University of Technology 2 University of Vienna Padova, June 2012 financial support by the Austrian Science Fund (FWF)

  2. outline 1 examples in physics 2 nonlocal operator 3 partial integro-differential equations 4 traveling wave solutions existence of traveling wave solutions asymptotic stability of traveling wave solutions 5 outlook 6 References

  3. shallow water flow boundary conditions at free surface incompressible Navier-Stokes equations no-slip boundary conditions at rigid bottom Assumptions (Kluwick, Cox, Exner and Grinschgl (2010)) 1 Froude number 1 < U 0 √ gH << 2 2 length scales H << L 3 Reynolds number 1 << Re = L √ gH H 2 L 2 ν ⇒ viscous effects only important in boundary layer

  4. incompressible Navier-Stokes equation u x + v y = 0 , � H 2 u t + uu x + vu y = − p x + 1 � L 2 u xx + u yy , Re v t + uv x + vv y = − L 2 � H 2 H 2 ( p y + 1) + 1 � L 2 v xx + v yy . Re x , y ...coordinates, u , v ...velocity components, t ...time, p ...pressure no-slip boundary condition y = s ( x , t ) : u = 0 , v = s t . boundary conditions at free surface � − 3 / 2 1 + H 2 � L 2 ( h x ) 2 y = h ( x , t ) : h t + uh x − v = 0 , p = − Th xx .

  5. triple-deck structure: lower deck matching conditions Y →∞ U ( X , Y ) = Y + A , lim X →−∞ U ( X , Y ) = Y . lim no-slip b.c. at Y = 0: U = 0 , V = 0 . governing equations for ( U , V , P ) with X ∈ R , Y ∈ R + and t ∈ R + ∂ X U + ∂ Y V = 0 , U ∂ X U + V ∂ Y U = − ∂ X P + ∂ 2 Y U , ∂ t P + ∂ X P − P ∂ X P = K 1 ∂ X A + K 2 ∂ 3 X P .

  6. linear flow response interaction equation for pressure P ∂ t P + ∂ X P = K 1 ∂ X D 1 / 3 P + K 2 ∂ 3 X P , X ∈ R , t ∈ R + , with constants K 1 and K 2 related to K 1 streamline curvature and boundary displacement effects K 2 detuning and surface tension and a nonlocal operator D α with 0 < α < 1 defined as � X P ′ ( ξ ) 1 ( D α P )( X ) := ( X − ξ ) α d ξ . Γ(1 − α ) −∞

  7. Fowler equation: model for dune formation ∂ t u + 1 2 ∂ x u 2 = − ∂ x D 1 / 3 u + ∂ 2 x u , x ∈ R , t ∈ R + , where u ( x , t ) represents dune amplitude. no maximum principle (Alibaud, Azerad and Is` ebe (2010)) bore-like traveling wave solutions

  8. nonlocal operator ∂ x D α For 0 < α < 1, the operator � x u ′ ( y ) 1 ( ∂ x D α u )( x ) = ∂ x ( x − y ) α dy Γ(1 − α ) −∞ is a Fourier multiplier operator 1 � F ( ∂ x D α u )( ξ ) = e − i ξ x ( ∂ x D α u )( x ) dx = Λ( ξ ) F u ( ξ ) √ 2 π R with u ∈ S ( R ) and symbol � απ απ �� � � � | ξ | α +1 , Λ( ξ ) = − sin − i sgn( ξ ) cos ξ ∈ R . 2 2

  9. Fourier multiplier operator ( F Tf )( ξ ) = − ψ ( − ξ )( F f )( ξ ) Riesz-Feller operator T θ Id i sgn( ξ ) θπ ψ ( ξ ) = | ξ | a exp � � 2 2 real-valued parameters ∂ x − H 1 a index of stability ∂ x D α u 0 < a ≤ 2 1 − α ∂ 2 θ skewness parameter − Id − ∂ x H x 0 | θ | ≤ min( a , 2 − a ) Hilbert transform − H ∂ 2 ∂ 3 − ∂ x � ∞ H x x Hf := p . v . 1 f ( y ) a − 1 x − y dy π 0 1 1 + α 2 3 −∞

  10. Fourier multiplier ψ a ,θ ( ξ ) := | ξ | a exp i sgn( ξ ) θ π � � 2 θ − 1 2 real-valued parameters i sgn( ξ ) i ξ 1 a index of stability − ( i ξ ) a 0 < a ≤ 2 1 − α | ξ | 2 θ skewness parameter | ξ | 1 0 | θ | ≤ min( a , 2 − a ) − ( i ξ ) 3 − i sgn( ξ ) − i ξ a − 1 0 1 1 + α 2 3

  11. fractional diffusion equation ∂ t u = ∂ x D α u , x ∈ R , t ∈ R + , for some fixed α with 0 < α < 1. strongly continuous, convolution semigroup T t : L p ( R ) → L p ( R ) , u 0 �→ T t u 0 = u ( t , x ) = K ( t , · ) ∗ u 0 , with 1 ≤ p < ∞ and kernel K ( t , x ) = F − 1 (exp(Λ( . ) t ))( x ). Properties of K ( t , x ): for all x ∈ R , t > 0 and m ∈ N , non-negative K ( t , x ) ≥ 0 integrable � K ( t , . ) � L 1 ( R ) = 1 1 1 scaling K ( t , x ) = t − 1+ α K (1 , xt − 1+ α ) smooth K ( t , x ) is C ∞ smooth bounded there exists B m ∈ R + such that B m x K | ( t , x ) ≤ t − 1+ m | ∂ m 1+ α 2 1 + t − 1+ α | x | 2

  12. L´ evy strictly stable distributions on R random variable X θ E [exp( i ξ X )] = exp( − ψ ( ξ )) ψ ( ξ ) = | ξ | a exp i sgn( ξ ) θ π � � 2 2 distributions L L´ evy-Smirnov 1 PDF x − 3 / 2 − 1 � � 2 √ π exp , 4 x 1 − α x > 0. C H N C Cauchy(-Lorentz) 0 PDF 1 1 L π 1+ x 2 H Holtsmark a − 1 N Normal (Gaussian) 0 1 1 + α 2 3 − x 2 1 � � PDF 2 πσ 2 exp √ 2 σ 2

  13. approximate identity Theorem (Stein, Weiss) Suppose φ ∈ L 1 ( R n ) with � R n φ ( x ) dx = 1 and for ǫ > 0 let φ ǫ ( x ) = ǫ − n φ ( x /ǫ ) . If f ∈ L p ( R n ) , 1 ≤ p < ∞ , or f ∈ C 0 ⊂ L ∞ ( R n ) , then � f ∗ φ ǫ − f � p → 0 as ǫ → 0 . Theorem (Lieb, Loss) Let j be in L 1 ( R n ) with R n j = 1 . For ǫ > 0 , define j ǫ ( x ) := ǫ − n j ( x /ǫ ) , so � R n j ǫ = 1 and � j ǫ � 1 = � j � 1 . Let f ∈ L p ( R n ) for some 1 ≤ p < ∞ and � that define the convolution f ǫ := j ǫ ∗ f . Then f ǫ ∈ L p ( R n ) and � f ǫ � p ≤ � j � 1 � f � p . f ǫ → f strongly in L p ( R n ) as ǫ → 0 . If j ∈ C ∞ c ( R n ) , then f ǫ ∈ C ∞ ( R n ) and D α f ǫ = ( D α j ǫ ) ∗ f .

  14. Theorem (L´ evy process) For every 0 < α < 1 , there exists a L´ evy process { X t | t ≥ 0 } such that the probability distribution µ t of X t has probability density function K ( t , x ) . Moreover, the associated transition semigroup { P t } is a strongly continuous semigroup on C 0 ( R ) with � P t � = 1 . The infinitesimal generator L α of { P t } is given for f ∈ C 2 0 ( R ) by � � ∞ f ( x + y ) − f ( x ) − yf ′ ( x ) (1 − α ) π � L α f ( x ) = cos d y y 2+ α 2 0 and has core C ∞ c ( R ) . transition function P t ( x , B ) = µ t ( B − x ) for t ≥ 0 , x ∈ R , B ∈ B ( R ) transition semigroup Define for f ∈ C 0 ( R ) � � ( P t f )( x ) = P t ( x , d y ) f ( y ) = f ( x + y ) K ( t , y ) d y = E [ f ( x + X t )] , R R then P t f ∈ C 0 ( R ) by the Lebesgue convergence theorem.

  15. scalar conservation law with nonlocal diffusion ∂ t u + ∂ x f ( u ) = ∂ x D α u , x ∈ R , t ∈ R + , (1) where f ( u ) is a smooth flux function. Theorem (Droniou, Gallou¨ et and Vovelle (2003)) The Cauchy problem of (1) with initial datum u 0 ∈ L ∞ ( R ) has a unique global solution u ( t , x ) , in the sense that u ∈ L ∞ ((0 , ∞ ) × R ) satisfies � t � � u ( t , x ) = ( K ( t , . ) ∗ u 0 )( x ) − K ( t − τ, . ) ∗ ∂ x f ( u ( τ, . )) ( x ) d τ (2) 0 almost everywhere. Moreover, 1 u ∈ C ∞ ((0 , ∞ ) × R ) and u ∈ C ∞ b (( t 0 , ∞ ) × R ) for all t 0 > 0 . 2 u satisfies equation (1) in the classical sense. 3 for all t > 0 , � u ( t , . ) � ∞ ≤ � u 0 � ∞ and, in fact, u takes its values between the essential lower and upper bounds of u 0 . 4 u ( t ) t → 0 → u 0 in L ∞ ( R ) weak- ∗ and in L p − − loc ( R ) for all p ∈ [1 , ∞ ) .

  16. sketch of proof Droniou, Gallou¨ et and Vovelle established the result in case of a nonlocal diffusion operator with symbol −| ξ | 1+ α for 0 < α < 1. existence Suppose u 0 ∈ C ∞ c ( R ). Construct approximate solution u δ , δ > 0, by a splitting method: Define u δ (0 , . ) = u 0 Define u δ ( t , x ) on ( t , x ) ∈ (2 n δ, (2 n + 1) δ ] × R , n ∈ N 0 , as the solution of ∂ t u = 2 ∂ x D α u with initial condition u δ (2 n δ, . ). Define u δ ( t , x ) on ( t , x ) ∈ ((2 n + 1) δ, (2 n + 2) δ ] × R , n ∈ N 0 , as the solution of ∂ t u + 2 ∂ x f ( u ) = 0 with initial condition u δ ((2 n + 1) δ, . ). For δ 0 > 0 sufficiently small, any compact set Q ⊂ R and T > 0, { u δ | δ ∈ (0 , δ 0 ] } is relatively compact in C ([0 , T ]; L 1 ( Q )). limit function u ∈ C ([0 , T ]; L 1 ( R )) satisfies mild formulation (2).

  17. scalar conservation law with vanishing nonlocal diffusion ∂ t u ǫ + ∂ x f ( u ǫ ) = ǫ∂ x D α u ǫ , x ∈ R , t ∈ R + , (3) where f ( u ) is a smooth flux function. Theorem (Droniou (2003)) Suppose 0 < α ≤ 1 and u 0 ∈ L ∞ ( R ) . The solution u ǫ of ∂ t u ǫ + ∂ x f ( u ǫ ) = ǫ∂ x D α u ǫ , u ǫ (0 , x ) = u 0 ( x ) , converges as ǫ → 0 in C ([0 , T ]; L 1 loc ( R n )) for all T > 0 to the entropy solution of the Cauchy problem ∂ t u + ∂ x f ( u ) = 0 , u (0 , x ) = u 0 ( x ) . Moreover, if u 0 ∈ L ∞ ( R ) ∩ L 1 ( R ) ∩ BV ( R ) , then � u ǫ − u � C ([0 , T ]; L 1 ( R )) = O ǫ 1 / (1+ α ) � � .

  18. traveling wave solutions of equation (1) Consider wave speed s ∈ R and traveling wave variable ξ := x − st . Definition A traveling wave solution of (1) is a solution of the form u ( t , x ) = ¯ u ( ξ ), for some function ¯ u that connects different endstates lim ξ →±∞ ¯ u ( ξ ) = u ± . traveling wave equation � x u ′ ( y ) 1 = D α u = � � h ( u ) := f ( u ) − su − f ( u − ) − su − ( x − y ) α dy Γ(1 − α ) −∞ (4) properties of specific traveling wave solutions Rankine-Hugoniot condition f ( u + ) − f ( u − ) = s ( u + − u − ) For convex flux function f ( u ) and a monotone solution, standard entropy condition u − > u + .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend