c
play

c + = Diffusion Diffusion 2 6.82 10 -6 v c D c 10 - PowerPoint PPT Presentation

! Diffusivity ! Diffusivity ! Diffusion Equation ! Diffusion Equation ! Diffusion to a Wall ! Diffusion to a Wall ! Deposition Velocity, Diffusion ! Deposition Velocity, Diffusion Boundary Layer, Diffusion Force Boundary Layer, Diffusion


  1. ! Diffusivity ! Diffusivity ! Diffusion Equation ! Diffusion Equation ! Diffusion to a Wall ! Diffusion to a Wall ! Deposition Velocity, Diffusion ! Deposition Velocity, Diffusion Boundary Layer, Diffusion Force Boundary Layer, Diffusion Force ! ! Diffusion to a Flat Plate Diffusion to a Flat Plate ! Diffusion in Tube ! Diffusion in Tube ! Taylor Diffusion ! Taylor Diffusion ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi Table of Particle Mass Diffusivity dc Table of Particle Mass Diffusivity Fick’s Law Law = − Fick’s J D µ dx d ( m ) 2 D ( cm / s ) 5.24 × 10 -4 10 -2 ∂ c + ⋅ ∇ = ∇ Diffusion Diffusion 2 6.82 × 10 -6 v c D c 10 -1 ∂ Equation Equation t 2.74 × 10 -7 1 2.38 × 10 -8 10 kTC = c D Diffusivity Diffusivity πµ 3 d ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi 1

  2. s 2 = Mean Square Mean Square Effect of Effect of 2 Dt Displacement Displacement Particle Mass Particle Mass = − τ − − τ Brownian Motion Brownian Motion 2 t / 2 kT s 2 Dt [ 1 ( 1 e ) / t ] θ = 2 t of Rotation of Rotation πµ 3 d Particle Mean 2 = Particle Mean Particle Fluctuation Particle Fluctuation 1 3 u 2 = m u kT Energy Energy 3 kT / m Free Path Free Path 2 2 λ α ≈ τ π 8 kT / m Concentration in − Concentration in mg ( x x ) = − 0 C C exp{ } gravitational field gravitational field 0 kT ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi y ∂ ∂ 2 c c ∂ ∂ ∂ η ∂ − ∂ η c c c y c = = = = − D = C ( y , 0 ) C ∂ ∂ ∂ ∂ η ∂ ∂ η ∂ η 2 t 0 t t 2 t y 2 t 4 Dt Similarity Equation Similarity Equation Similarity Variable Similarity Variable = C ( 0 , t ) 0 2 2 + dc d c dc y = − η + η = η = ln( ) ln A 2 0 η η η 2 d d d 4 Dt ∂ ∂ ∂ η ∂ ∂ ∂ 2 2 c c c 1 c c 1 dc = ∫ η = = = = − η 2 − η 2 η + Ae c A e d B 1 ∂ ∂ η ∂ ∂ η ∂ ∂ η η 2 2 1 y 4 Dt d y y 4 Dt 0 ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi 2

  3. η 1.0 tD=0.0025 tD=0.062 η → ∞ = C ( ) C tD=0.25 = 0 0.8 C ( y , t ) C erf ( y / 4 Dt ) tD=1 0 0.6 C/Co tD=4 0.4 η = = 0.2 C ( 0 ) 0 0.0 ξ 2 ∫ 0 0.5 1 1.5 2 2.5 3 ξ = − ξ 2 ξ erf ( ) e d = ∞ = x π y erf ( 0 ) 0 erf ( ) 1 0 Variation of concentration profile with time. Variation of concentration profile with time. ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi Number Deposited Number Deposited J D D D Diffusion Diffusion = = = = = dN Jdt C dt u π 0 in Time dt in Time dt t Velocity π δ Velocity D C t 0 c Diffusion Diffusion δ = π Dt Boundary Boundary c 4 Dt = Layer Layer Total Deposited in Total Deposited in N C π 0 Time Interval (0,t) Time Interval (0,t) Diffusion Diffusion = πµ F 3 du / C Force Force d D c ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi 3

  4. U C C U C 4 DL in = − out out 1 Concentration Ratio Concentration Ratio π 2 R C uR in Detailed Analysis Detailed Analysis 4 DL 4 Dt t = = = L / u N C N C π π in C 0 u = − φ + φ + φ out 2 / 3 4 / 3 1 2 . 56 1 . 2 0 . 177 C in π 2 R L − = − C C N DL φ = out in π 2 R L 2 uR ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi C o U o U o C o ∂ ∂ ∂ 2 u u u + = ν u v Momentum ∂ ∂ 2 x y dy y δ ∂ ∂ u v Mass + = 0 ∂ ∂ x y δ c x = = = y = u v c 0 0 ∂ ∂ ∂ 2 c c c + = Concentration u v D ∂ ∂ ∂ 2 → ∞ x y y = = y u U , c c 0 0 ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi 4

  5. = = ∞ = u f ( 0 ) f ' ( 0 ) 0 f ' ( ) 1 = η U Boundary Boundary f ' ( ) η = 0 y U ν Conditions Conditions x 0 = ∞ = c ( 0 ) 0 c ( ) c 0 ψ = ν η = η U o x f ( ) c c ( ) ν Blasius Blasius x = γ = δ = 5 f ' ' ( 0 ) 0 . 332 Solution Solution U 0 Momentum/Mass Concentration γ 2 + + = Near the Near the η ff ' ' 2 f ' ' ' 0 1 + = ν f ~ ... c " S fc ' 0 = S c Plate Plate c 2 2 D Blasius Equation ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi 1.0 η ∫ − γ 3 γ C exp( s z ) dz 0 1 c γ = 0.8 = 0 C 1 ∞ 12 ∫ − γ 0.6 3 exp( s z ) dz C/Co 1 c 0 0.4 0.2 γ η s 3 c ∫ = − γ 0.0 1 c 3 [exp( s z )] dz 0 0.5 1 1.5 2 2.5 3 1 c c 0 . 89 z 0 0 ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi 5

  6. γ δ c ⎡ ∂ ⎤ 3 ( s ) c U U = = = 1 c 0 0 J D ⎢ ⎥ Dc 0 . 34 Dc 3 s ∂ 0 0 c ⎣ ⎦ y 0 . 89 vx vx u = y 0 c z r R y δ Dc 3 vx 0 . 6 Diffusion Diffusion δ = ≈ ≈ 0 c J U Boundary Layer 3 s 3 s Boundary Layer 0 c c 2 Laminar Laminar r = − = − u u ( 1 ) y R r Flow Flow 0 2 = ∫ L R Total Total U L = = I Jdx 0 . 68 Dc s R o 3 R Diffusion Diffusion 0 c eL eL ν 0 2 y + u ~ u ... 0 R ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi ∂ ∂ η 2 − 2 u c c Diffusion 2 Diffusion Concentration Concentration ∫ = η η 3 0 c exp{ } d y D Equation Equation 0 1 1 ∂ ∂ 9 Profile 2 Profile R x y = 0 c ∞ − 2 ∫ η η 3 exp{ } d 1 1 9 u y Similarity Similarity Boundary Condition Boundary Condition η = 0 0 Wall Flux Wall Flux 3 Variable Variable 3 c = DR x y = 0 0 Dc u 0 0 3 ⎡ ∂ ⎤ c 3 x DR u = = J D ⎢ ⎥ J = → ∞ 2 = 0 ∂ ∞ 0 . 67 c D y 2 3 ⎣ y ⎦ c = 2 ∫ − η η + η = 3 0 c y 0 exp( ) d DRx c ' ' c ' 0 1 1 9 0 0 3 ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi 6

  7. ∂ ∂ ∂ ∂ ∂ 2 2 c c c 1 c c + = + + Total Flux L 2 Total Flux u L u ( r ) D ( ) ∫ = π = π 0 I 2 R Jdx 2 . 01 c DR 3 ∂ ∂ ∂ ∂ ∂ 2 2 t x r r r x 0 DR 0 2 r Diffusion Diffusion = − 3 2 2 Neglecting Axial Neglecting Axial Dc R x 1 R x u ( r ) 2 U ( 1 ) δ = = = 0 Boundary Boundary 2 3 R Diffusion Diffusion c 1 / 3 1 / 3 J 0 . 67 s R 0 . 67 s R layer layer c eR c eR ∂ ∂ ∂ ∂ 2 2 c 2 r c c 1 c + − = + u R U ( 1 ) D ( ) = 0 R ∂ ∂ ∂ ∂ 2 2 ν t R x r r r e R ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi [ ] = ⎡ ∂ ⎤ R R ∂ c ≈ ∂ ∂ c c 1 1 2 c ∫ ∫ ∫ c c = = = π = = Moving Moving = = o r 0 c cdA 2 rcdr crdr 0 ⎢ ⎥ const For For 0 π 2 2 ∂ A ⎣ ⎦ Frame Frame ∂ ∂ R R ∂ r x x t A 0 0 R Concentration Concentration ∂ ∂ ∂ 2 2 2 r c c 1 c Diffusion Diffusion − = + ∂ U ( 1 ) D ( ) In Moving In Moving 2 2 4 R U c 1 r 1 r ∂ ∂ ∂ = + − + − 2 2 Frame Frame R x r r r c c ( ) ∂ 2 4 4 D x 3 R 2 R ∂ 2 2 4 ∂ UR c r 1 r R 2 2 R U c = + − Total Total ∫ Solution Solution = π − = − π c c ( ) 2 Q 2 c ( u U ) rdr ( R ) ∂ o ∂ 2 4 c 4 D x R 2 R Flux Flux 48 D x 0 ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi 7

  8. ∂ 2 2 Q R U c Flux Per Flux Per = = − J ( ) t = N π ∂ 2 = 2 δ Unit Area Unit Area R 48 D x 0 c ( x ) π R 2 2 R U Effective (Taylor) Effective (Taylor) eff = D Diffusivity Diffusivity 48 D − ∂ c ≠ ∂ ∂ ∂ 2 2 c c 1 N 1 ( x Ut ) = − = = − const . J D c exp{ } ∂ ∂ ∂ ∂ eff 2 x t x x π 2 π 2 R 4 D t D t eff eff L 2 UR >> e >> = = P R S Range of Validity P 14 Range of Validity e e c D R ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi ! Mass diffusion decreases with size ! Mass diffusion decreases with size 2.0 1.8 1.6 ! Diffusion Boundary Layer is ! Diffusion Boundary Layer is 1.4 1.2 C/Co generally smaller that momentum generally smaller that momentum 1.0 0.8 boundary layer boundary layer 0.6 0.4 0.2 ! Convective diffusion in a tube ! Convective diffusion in a tube 0.0 0 1 2 3 4 ! ! Taylor diffusion in a tube Taylor diffusion in a tube x Variations of concentration along the tube at different times. Variations of concentration along the tube at different times. ME 437/537 G. Ahmadi ME 437/537 G. Ahmadi 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend