shape optimization for interface identification in
play

Shape optimization for interface identification in nonlocal models - PowerPoint PPT Presentation

Shape optimization for interface identification in nonlocal models Volker Schulz and Christian Vollmann www.alop.uni-trier.de Why nonlocal operators? Because of a wealth of application fields: fractional diffusion (Brockmann et al. 2008,


  1. Shape optimization for interface identification in nonlocal models Volker Schulz and Christian Vollmann www.alop.uni-trier.de

  2. Why nonlocal operators? Because of a wealth of application fields: • fractional diffusion (Brockmann et al. 2008, D’Elia and Gunzburger 2013, Harbir 2015,...) • peridynamics (Silling 2000, Du and Zhou 2010/11, D’Elia et al. 2016,...) • image processing (Gilboa and Osher 2009, Lou et al. 2010, Peyre et al. 2008,...) • cardiology (Cusimano et al. 2015,...) • machine learning (Rosasco et al. 2010,...) • finance (Lvendoskii et al. 2004,...) • growth models in economics (Augeraud-Veron et al. 2019 [survey], Frerick/Müller-Fürstenberger/Sachs/Somorowsky 2019,...) 1

  3. Why nonlocal operators? Because of a wealth of application fields: • fractional diffusion (Brockmann et al. 2008, D’Elia and Gunzburger 2013, Harbir 2015,...) • peridynamics (Silling 2000, Du and Zhou 2010/11, D’Elia et al. 2016,...) • image processing (Gilboa and Osher 2009, Lou et al. 2010, Peyre et al. 2008,...) • cardiology (Cusimano et al. 2015,...) • machine learning (Rosasco et al. 2010,...) • finance (Lvendoskii et al. 2004,...) • growth models in economics (Augeraud-Veron et al. 2019 [survey], Frerick/Müller-Fürstenberger/Sachs/Somorowsky 2019,...) Because of interesting structures: • full matrices lacking sparsity • nevertheless, on structured grids, tensor based methods exist for fractional Laplacians limiting the overall effort to O ( n log n ) – also in the optimal control case (Heidel/Khoromskaia/Khoromskij/Schulz 2018) • general nonlocal operators on structured grids provide Toeplitz structures leading to high efficiency (Vollmann/Schulz 2019) → numerical solution of nonlocal shape optimization problems is a new challenge and has to be done on unstructured meshes 1

  4. bounded domain in R d x Ω u ( x , t ) density of particles Ω c Ω 2

  5. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y Ω c Ω 2

  6. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω 2

  7. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . 2

  8. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t 2

  9. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t 2

  10. y y bounded domain in R d x Ω y y u ( x , t ) density of particles γ ( x , y ) probability/tendency that a particle moves y from x to y y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t 2

  11. y y bounded domain in R d x Ω y y u ( x , t ) density of particles γ ( x , y ) probability/tendency that a particle moves y from x to y y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t 2

  12. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t 2

  13. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t � t + h � ⇔ 1 = 1 � � u ( x , t + h ) − u ( x , t ) R d ( u ( y , s ) γ ( y , x ) − u ( x , s ) γ ( x , y )) d y + f ( x , s ) ds h h t � ∂ h → 0 − − − → ∂t u ( x , t ) = R d ( u ( y , t ) γ ( y , x ) − u ( x , t ) γ ( x , y )) d y + f ( x , t ) 2

  14. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t � t + h � ⇔ 1 = 1 � � u ( x , t + h ) − u ( x , t ) R d ( u ( y , s ) γ ( y , x ) − u ( x , s ) γ ( x , y )) d y + f ( x , s ) ds h h t � ∂ h → 0 − − − → ∂t u ( x , t ) = R d ( u ( y , t ) γ ( y , x ) − u ( x , t ) γ ( x , y )) d y + f ( x , t ) 2

  15. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t � t + h � ⇔ 1 = 1 � � u ( x , t + h ) − u ( x , t ) R d ( u ( y , s ) γ ( y , x ) − u ( x , s ) γ ( x , y )) d y + f ( x , s ) ds h h t � ∂ h → 0 − − − → ∂t u ( x , t ) = R d ( u ( y , t ) γ ( y , x ) − u ( x , t ) γ ( x , y )) d y + f ( x , t ) 2

  16. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t � t + h � ⇔ 1 = 1 � � u ( x , t + h ) − u ( x , t ) R d ( u ( y , s ) γ ( y , x ) − u ( x , s ) γ ( x , y )) d y + f ( x , s ) ds h h t � ∂ h → 0 − − − → ∂t u ( x , t ) = R d ( u ( y , t ) γ ( y , x ) − u ( x , t ) γ ( x , y )) d y + f ( x , t ) 2

  17. γ ( x , y ) bounded domain in R d x Ω u ( x , t ) density of particles y γ ( x , y ) probability/tendency that a particle moves γ ( y , x ) from x to y f ( x , t ) external source density Ω c Ω Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t � t + h � ⇔ 1 = 1 � � u ( x , t + h ) − u ( x , t ) R d ( u ( y , s ) γ ( y , x ) − u ( x , s ) γ ( x , y )) d y + f ( x , s ) ds h h t � ∂ h → 0 − − − → ∂t u ( x , t ) = R d ( u ( y , t ) γ ( y , x ) − u ( x , t ) γ ( x , y )) d y + f ( x , t ) � �� � =0 2

  18. φ ( x , y ) bounded domain in R d Ω x u ( x , t ) density of particles S ( x ) y γ ( x , y ) probability/tendency that a particle moves from x to y f ( x , t ) external source density Ω Ω I Conservation law: Let x ∈ Ω , t ≥ 0 and consider a time horizon h > 0 . � t + h � t + h � � � � u ( x , t + h ) = u ( x , t ) + R d u ( y , s ) γ ( y , x ) d y − R d u ( x , s ) γ ( x , y ) d y ds + f ( x , s ) ds t t � t + h � ⇔ 1 = 1 � � u ( x , t + h ) − u ( x , t ) R d ( u ( y , s ) γ ( y , x ) − u ( x , s ) γ ( x , y )) d y + f ( x , s ) ds h h t � ∂ h → 0 − − − → ∂t u ( x , t ) = R d ( u ( y , t ) γ ( y , x ) − u ( x , t ) γ ( x , y ) ) d y + f ( x , t ) � �� � � �� � =: φ ( x , y ) χ S ( x ) ( y ) =0 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend