nonlinear response theory in long range hamiltonian
play

Nonlinear response theory in long-range Hamiltonian systems - PowerPoint PPT Presentation

2014/05/27@The Galileo Galilei Institute for Theoretical Physics Advances in Nonequilibrium Statistical Mechanics: large deviations and long-range correlations, extreme value statistics, anomalous transport and long-range interactions Nonlinear


  1. 2014/05/27@The Galileo Galilei Institute for Theoretical Physics Advances in Nonequilibrium Statistical Mechanics: large deviations and long-range correlations, extreme value statistics, anomalous transport and long-range interactions Nonlinear response theory in long-range Hamiltonian systems Yoshiyuki Y. YAMAGUCHI (Kyoto University, JAPAN) In collaboration with Shun Ogawa (Kyoto University)

  2. Main topics We propose a nonlinear response theory for long-range Hamiltonian systems. 1) Reponse to external field → Strange critical exponents and scaling relation 2) Reponse to perturbation → Discussion on limitation of the theory

  3. Response Response Observing the response, we get information of the black-box.

  4. Response Response External mag. field /perturbation Magnetization Ferro mag. body Response

  5. Hamiltonian mean-field model A paradigmatic toy model of a ferro magnetic body Each spin interacts with the other spins attractively All interactions are only through the magnetization (mean-field) � M N N N p 2 2 − 1 j � � � H = cos( q j − q k ) − h cos q j 2 N j =1 j,k =1 j =1 h : external mag. field

  6. Critical phenomena in HMF ( h = 0 ) M T Tc Critical phenomena of mean-field systems are analysed by Landau theory

  7. Landau theory F ( M ) = a 2( T − T c ) M 2 + b 4 M 4 + · · · − hM Free energy: d F d M = a ( T − T c ) M + bM 3 − h = 0 Realized M :

  8. Landau theory d F d M = a ( T − T c ) M + bM 3 − h = 0 Realized M : Critical exponents

  9. Landau theory d F d M = a ( T − T c ) M + bM 3 − h = 0 Realized M : Critical exponents β = 1 M ∝ ( T c − T ) β h = 0 : 2

  10. Landau theory d F d M = a ( T − T c ) M + bM 3 − h = 0 Realized M : Critical exponents β = 1 M ∝ ( T c − T ) β h = 0 : 2 � d M � ∝ ( T − T c ) − γ + h � = 0 : γ + = 1 T > T c � d h � h → 0

  11. Landau theory d F d M = a ( T − T c ) M + bM 3 − h = 0 Realized M : Critical exponents β = 1 M ∝ ( T c − T ) β h = 0 : 2 � d M � ∝ ( T − T c ) − γ + h � = 0 : γ + = 1 T > T c � d h � h → 0 ∝ ( T c − T ) − γ − γ − = 1 T < T c

  12. Landau theory d F d M = a ( T − T c ) M + bM 3 − h = 0 Realized M : Critical exponents β = 1 M ∝ ( T c − T ) β h = 0 : 2 � d M � ∝ ( T − T c ) − γ + h � = 0 : γ + = 1 T > T c � d h � h → 0 ∝ ( T c − T ) − γ − γ − = 1 T < T c M ∝ h 1 /δ T = T c : δ = 3

  13. Landau theory Scaling relation γ ± = β ( δ − 1) Critical exponents β = 1 M ∝ ( T c − T ) β h = 0 : 2 � d M � ∝ ( T − T c ) − γ + h � = 0 : γ + = 1 T > T c � d h � h → 0 ∝ ( T c − T ) − γ − γ − = 1 T < T c M ∝ h 1 /δ T = T c : δ = 3

  14. Question Landau theory gives critical exponents in the context of statistical mechanics. Q. Does dynamics give the same critical exponents ? q j = ∂H p j = − ∂H ˙ , ˙ ∂p j ∂q j For simplicity, we start from themal equilibrium states: → β = 1 / 2 .

  15. Vlasov approach N -body: N N � � p 2 2 − 1 j � � H = cos( q j − q k ) − h cos q j 2 N j =1 k =1 1 -body: H [ f ] = p 2 � cos( q − q ′ ) f ( q ′ , p ′ , t ) dq ′ dp ′ − h cos q 2 − Vlasov equation: ∂f ∂t = ∂ H [ f ] ∂f ∂p − ∂ H [ f ] ∂f ∂q = {H [ f ] , f } ∂q ∂q

  16. Linear response theory - Patelli et al., PRE 85 , 021133 (2012) - Ogawa-YYY, PRE 85 , 061115 (2012) - Ogawa-Patelli-YYY, PRE 89 , 032131 (2014) Critical exponents β = 1 M ∝ ( T c − T ) β h = 0 : 2 ❄ � d M � ∝ ( T − T c ) − γ + h � = 0 : γ + = 1 γ + = 1 � d h � h → 0 γ − = 1 ∝ ( T c − T ) − γ − γ − = 1 4 M ∝ h 1 /δ T = T c : δ = 3

  17. Nonlinear response theory We need a nonlinear response theory for δ . Check the scaling relation γ = β ( δ − 1) . Critical exponents β = 1 M ∝ ( T c − T ) β h = 0 : 2 � d M � ∝ ( T − T c ) − γ + h � = 0 : γ + = 1 γ + = 1 � d h � h → 0 γ − = 1 ∝ ( T c − T ) − γ − γ − = 1 4 M ∝ h 1 /δ T = T c : δ = 3 δ = ?

  18. Idea f ini : Initial stationary state f 0 : Initial state with perturbation ǫg 0 f A : Asymptotic state

  19. Idea Normal decomposition: f = f ini + ǫg H [ f ini ] drives the system (cf. Landau damping)

  20. Idea Our decomposition: f = f A + ǫg T H [ f A ] drives the system

  21. Asymptotic state Contours of f 0 Contours of f A f A = (average of f 0 over iso- H [ f A ] curve)

  22. Asymptotic state Contours of f 0 Contours of f A f A = (average of f 0 over iso- H [ f A ] curve) ⇓ ( θ, J ) : Angle-action associated with H [ f A ] f A = � f 0 � J : Average over θ (iso − J curve)

  23. Idea of re-arrangement itself is not new f A = � f 0 � J : Re-arrangement of f 0 along iso- J curve 1 -level waterbag initial distribution - Leoncini-Van Den Berg-Fanelli, EPL 86 , 20002 (2009) - de Buyl-Mukamel-Ruffo, PRE 84 , 061151 (2011) multi-level waterbag initial distribution - Ribeiro-Teixeira et al., PRE 89 , 022130 (2014)

  24. What’s new Landau like equation for asymptotic M = ⇒ Critical exponents Justification of theory (omitting ǫg T ) by the hypotheses H0. The asymptotic state f A is stationary. H1. f ( t ) is in a O ( ǫ ) neighbourhood of f ini . H2. We may omit O ( ǫ 2 ) . = ⇒ Discussion on limitation of the theory

  25. Self-consistent equation for M � f A = � f 0 � J = ⇒ M = cos θ � f 0 � J dqdp ✻ J depends on M through H [ f A ] H [ f A ] = p 2 2 − ( M + h ) cos q We expand the self-consistent equation for small M .

  26. Expansion of self-consistent equation We focus on homogeneous f ini ( p ) . � M = cos q � f 0 � J dqdp √ ✲ power series of M + h Expansion p √ Separatrix width is of O ( M + h ) q

  27. Initial condition f 0 ( q, p ) = Ae − p 2 / 2 T (1 + ǫ cos q ) � ✒ ✻ � Homogeneous Maxwellian Perturbation After long computations...

  28. Landau like equation − ǫa ( M + h ) 1 / 2 + b ( T − T c )( M + h ) + c ( M + h ) 3 / 2 − h = 0 a, b, c > 0 cf. Landau theory: a ( T − T c ) M + bM 3 − h = 0

  29. Landau like equation − ǫa ( M + h ) 1 / 2 + b ( T − T c )( M + h )+ c ( M + h ) 3 / 2 − h = 0 ǫ = 0 : M ∝ ( T − T c ) − 1 h T > T c : Linear response

  30. Landau like equation − ǫa ( M + h ) 1 / 2 + b ( T − T c )( M + h ) + c ( M + h ) 3 / 2 − h = 0 ǫ = 0 : M ∝ ( T − T c ) − 1 h T > T c : Linear response M ∝ h 2 / 3 T = T c : Nonlinear response δ = 3 / 2

  31. Response to external field (numerical test) 10 0 T c = 0 . 5 T = 0 . 50 T = 0 . 51 T = 0 . 55 10 − 1 T = 0 . 60 T = 0 . 70 10 − 2 Slope= 2 / 3 M 10 − 3 10 − 4 Slope= 1 10 − 5 10 − 6 10 − 6 10 − 5 10 − 4 10 − 3 10 − 2 10 − 1 h Ogawa-YYY, PRE 89 , 052114 (2014) [slightly modified]

  32. Scaling relation in Vlasov dynamics Scaling relation holds even in the Vlasov dynamics ! γ − = β ( δ − 1) Critical exponents β = 1 β = 1 M ∝ ( T c − T ) β h = 0 : 2 2 � d M � ∝ ( T − T c ) − γ + h � = 0 : γ + = 1 γ + = 1 � d h � h → 0 γ − = 1 ∝ ( T c − T ) − γ − γ − = 1 4 δ = 3 M ∝ h 1 /δ T = T c : δ = 3 2

  33. Origin of the strange exponents The Vlasov equation has infinite invariants called Casimirs: � C [ f ] = c ( f ( q, p )) dqdp ∀ c smooth

  34. Response to perturbation − ǫa ( M + h ) 1 / 2 + b ∆ T ( M + h ) + c ( M + h ) 3 / 2 − h = 0 ∆ T = T − T c h = 0 : � 2 � ( b ∆ T ) 2 + 4 ǫac � − b ∆ T + T > T c : M = 2 c

  35. Response to perturbation − ǫa ( M + h ) 1 / 2 + b ∆ T ( M + h ) + c ( M + h ) 3 / 2 − h = 0 ∆ T = T − T c h = 0 : � 2 � ( b ∆ T ) 2 + 4 ǫac � − b ∆ T + T > T c : M = 2 c M = a T = T c : c ǫ

  36. Response to perturbation (numerical test) 0.1 T c = 0 . 5 T = 0 . 50 T = 0 . 51 T = 0 . 55 0.08 T = 0 . 60 T = 0 . 70 0.06 M 0.04 0.02 0 0 0.05 0.1 0.15 0.2 ǫ Ogawa-YYY, PRE 89 , 052114 (2014)

  37. Discrepancy ? We omitted O ( ǫ 2 ) term. ⇓ The transient part ǫg T can be omitted. 0.1 T = 0 . 50 T = 0 . 51 T = 0 . 55 0.08 T = 0 . 60 T = 0 . 70 Omitting transient part ǫg T implies 0.06 M 0.04 omitting the Landau damping. 0.02 0 0 0.05 0.1 0.15 0.2 ǫ T = T c : Damping rate is zero, and the theory works well. T ր : Damping rate grows, and the theory gets worse.

  38. Numerical evidences � f − f 0 � L 1 � f − f ini � L 1 0.14 0.14 0.12 0.12 T = 0 . 5 T = 0 . 7 0.1 0.1 || f − f ini || L 1 || f − f 0 || L 1 0.08 0.08 T = 0 . 6 T = 0 . 6 0.06 0.06 0.04 0.04 T = 0 . 7 (a) 0.02 0.02 T = 0 . 5 (b) 0 0 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 t t Ogawa-YYY, PRE 89 , 052114 (2014) 0.7 0.6 0.5

  39. Summary [Ogawa-YYY, PRE 89, 052114 (2014)] We proposed a nonlinear response theory for long-range Hamiltonian systems. It works not only for thermal eq. but also for QSSs. Response to external field: γ − = β ( δ − 1) Landau theory Response theory M ∝ ( T c − T ) β β = 1 / 2 β = 1 / 2 dM/dh ∝ ( T − T c ) − γ + γ + = 1 γ + = 1 dM/dh ∝ ( T c − T ) − γ − γ − = 1 γ − = 1 / 4 M ∝ h 1 /δ δ = 3 δ = 3 / 2 Response to perturbation: The theory works well at the critical point (no damping).

  40. Thank you for your attention.

  41. Appendix A T-linearization and omitting the transient part ǫg T

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend