molecular design of organic electrode active materials
play

Molecular Design of Organic Electrode Active Materials for Aqueous - PowerPoint PPT Presentation

ISOC14 Molecular Design of Organic Electrode Active Materials for Aqueous Rechargeable Magnesium-ion Battery Masato Ito (Kyushu Univ.) Sep. 22, 2015@PWTC, Kuala Lumpur Toward Large-Scale Electricity Storage Commercial Rechargeable Batteries


  1. ISOC14 Molecular Design of Organic Electrode Active Materials for Aqueous Rechargeable Magnesium-ion Battery Masato Ito (Kyushu Univ.) Sep. 22, 2015@PWTC, Kuala Lumpur

  2. Toward Large-Scale Electricity Storage

  3. Commercial Rechargeable Batteries using s -Block Element Nickel-Metal hydride Lithium-ion Sodium-sulfur (NiMH) (LiB) (NaS) Advantage High power density High energy density Rare-metal free Disadvantage •memory effect •Flammable •High operation temp. •Less conductive •Corrosion of insulator •High cost •Dendritic-Na growth Electrolyte Aqueous Non-aqueous Solid ( β -Al 2 O 3 ) (KOH aq.) (Organic carbonate) Application Hybrid Vehicle Electric Vehicle Power Plant Accident example Nothing •Toko-Takaoka (2011) •PC smoking and fire •TEPCO (2013) •Boeing 787 (2013)

  4. Energy Density = Voltage x Capacity Stability Window of H 2 O Characteristics of Selected Ions 1.5 E (V) vs. NHE theoretical O 2 generation (E = 1.23 – 0.059pH) standard specific 1.0 Clarke ionic radius, electrode volume Number Å (CN6) potential, capacity, V (vs. SHE) Ah/cc 0.5 3 Li 0.006 0.76 -3.045 2.05 Stable Electrochemical Window 0.0 11 Na 2.63 1.02 -2.714 1.13 H 2 generation (E = – 0.059pH) ‐ 0.5 12 Mg 1.93 0.72 -2.356 3.83 ‐ 1.0 13 Al 7.56 0.54 -1.676 8.05 ‐ 1.5 0 2 4 6 8 10 12 14 pH

  5. Aqueous Rechargeable Battery: Historical Background capacity electrolyte cathode anode group (year) (mAh/g) 5 M LiNO 3 aq. LiMn 2 O 4 VO 2 10 Dahn (1994) sat. LiNO 3 aq. LiCoO 2 LiV 3 O 8 55 Wu (2007) 1 M Mg(NO 3 ) 2 aq. LiMn 2 O 4 Pt 42 Munichandraiah (2008) 1 M Li 2 SO 4 aq. LiFePO 4 LiTi 2 (PO 4 ) 3 82 Okada (2008) 1 M Na 2 SO 4 aq. Na 0.44 MnO 2 AC 45 Whitacre (2010) 2 M Na 2 SO 4 aq. Zn NaTi 2 (PO 4 ) 3 121 Okada (2011) 2 M Na 2 SO 4 aq. Na 0.44 MnO 2 NaTi 2 (PO 4 ) 3 42 Okada (2011) 5 M LiNO 3 aq. LiCoO 2 DANTCBI 71 Zhan (2014) 2 M MgSO 4 aq. Zn DAAQ 260 This work (2014) O O O N N N N O O O n 1,4-DAAQ DANTCBI

  6. Molecular Design of New Electrode Active Materials ■ Hexagonal Radialenes : 6-electron redox reaction at maximum X X X X 2e - 2e - 2e - X X X X X X X X X X X X X X 2e - 2e - 2e - X X X X X X X = CR 2 . NR, O oxidation reduction ■ The parent C 6 O 6 molecule can not exist without hydration O HO OH HO OH O O HO OH 8 H 2 O 2 H 2 O HO OH O O HO OH HO OH O Chem. Rev. 1992 , 92 , 1227 Acta Cryst. E, 2005 , 61 , o1393

  7. Hetero[6]radialenes New Candidates for Electrode Active Materials The two contiguous exocyclic double bonds in C 6 O 6 are replaced X 6 = O 4 N 2 X 6 = O 2 N 4 X 6 = N 6 X 6 = O 2 C 4 X 6 = O 2 N 2 C 2 O O N O O N O N O N N O N O N O N N N N N O N N O O O N N N N N N O O O

  8. Experimental Setup and Conditions RE hetero[6]radialene:AB:PTFE = WE composite 70:25:5 (by weight) electrolyte 2 M MgSO 4 aq. Zn wire Ni wire CE Zn metal, 99.9% (Nilaco) RE Ag/AgCl (BAS) CE WE 0.2 mA/cm 2 (constant) @ 25 ℃ current density - 0.8 ~ +0.6 V potential range Zn foil Ni mesh WE = working electrode, CE = counter electrode, RE = reference electrode AB = acetylene black (Denki Kagaku), PTFE = poly(tetrafluoroethylene) (Daikin)

  9. Charge/Discharge Profiles : Diaza-anthraquinone 1.0 1.0 1.0 1st 1st 1st 2nd 2nd 2nd Voltage (V) vs. Ag/AgCl Voltage (V) vs. Ag/AgCl Voltage (V) vs. Ag/AgCl 0.5 0.5 0.5 0.0 0.0 0.0 -0.5 -0.5 -0.5 -1.0 -1.0 -1.0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300 Capacity (mAh/g) Capacity (mAh/g) Capacity (mAh/g) O O O N N N O O O 1,4-DAAQ • • flat voltage plateau initial capacity decrease • • just above the lower limit significant loss of energy • clean reversible reaction

  10. Pyrazine-substructure 1.0 1.0 1.0 1st 1st 1st 2nd 2nd 2nd Voltage (V) vs. Ag/AgCl Voltage (V) vs. Ag/AgCl Voltage (V) vs. Ag/AgCl 0.5 0.5 0.5 0.0 0.0 0.0 -0.5 -0.5 -0.5 -1.0 -1.0 -1.0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300 Capacity (mAh/g) Capacity (mAh/g) Capacity (mAh/g) O O O N N N N N N O O O 1,4-DAAQ • flat voltage plateaus • initial capacity decrease

  11. para- vs ortho- Quinone 1.0 1.0 1st 1st 2nd 2nd Voltage (V) vs. Ag/AgCl Voltage (V) vs. Ag/AgCl 0.5 0.5 0.0 0.0 -0.5 -0.5 -1.0 -1.0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 Capacity (mAh/g) Capacity (mAh/g) O O N N O N N O 1,4-DAAQ • unattractive potential • initial capacity decrease

  12. Benzene Juncture 1.0 1.0 1st 1st 2nd 2nd Voltage (V) vs. Ag/AgCl Voltage (V) vs. Ag/AgCl 0.5 0.5 0.0 0.0 -0.5 -0.5 -1.0 -1.0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 Capacity (mAh/g) Capacity (mAh/g) O O N N N N O O 1,4-DAAQ The benzene ring possibly prevents 1,4-addition of water at the surface.

  13. Structural Change on Electrolysis : ex-situ IR 1 8 0 0 1 6 0 0 1 4 0 0 1 2 0 0 1 0 0 0 1.0 1st ③ Mg extraction 2nd Voltage (V) vs. Ag/AgCl ③ 0.5 ② 0.0 -0.5 ① ① Initial ② Mg insertion -1.0 0 50 100 150 200 250 300 1 8 0 0 1 6 0 0 1 4 0 0 1 2 0 0 1 0 0 0 Capacity (mAh/g) Wavenumber [cm -1 ] e e 260 mA/g: one Mg per one 1,4-DAAQ Mg 2+ O N N O 1,4-DAAQ electrolyte electrode

  14. Summary 1.5 E (V) vs. NHE O 2 generation (E = 1.23 – 0.059pH) 1.0 MgMnSiO 4 0.5 Stable electrochemical window of H 2 O 0.0 O N O H 2 generation (E = – 0.059pH) N ‐ 0.5 O N N ‐ 1.0 O 1,4-DAAQ ‐ 1.5 0 2 4 6 8 10 12 14 pH ■ 1,4-DAAQ as a promising electrode material for Mg ion battery ■ Capacity of 260 mAh/g is largest ever for an aqueous battery ■ Attractive potential for an anode material ■ Judicious arrangement of four consecutive exocyclic double bonds

  15. Acknowledgement Prof. S. Okada ( Kyushu Univ.) K. Chihara ( Tokyo Univ. of Science) K. Nakamoto ( Kyushu Univ.) T. Ikeda ( Kyushu Univ.)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend