modeling and analysis of a nonlinear pde system for phase
play

Modeling and analysis of a nonlinear PDE-system for phase - PowerPoint PPT Presentation

Weierstrass Institute for Applied Analysis and Stochastics DFG Research Center MATHEON Modeling and analysis of a nonlinear PDE-system for phase separation and damage Christiane Kraus (joint work with Christian Heinemann, WIAS, Elena


  1. Weierstrass Institute for Applied Analysis and Stochastics DFG Research Center MATHEON Modeling and analysis of a nonlinear PDE-system for phase separation and damage Christiane Kraus (joint work with Christian Heinemann, WIAS, Elena Bonetti, Antonio Segatti, Pavia) Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de

  2. Outline 1. Introduction 2. Modeling of a system for phase separation and damage processes 3. Numerical simulations 4. Existence results for the introduced system ⊲ different chemical energy densities ⊲ different elastic energy densities Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 2

  3. Motivation Morphology in solder joints ⊲ Phase separation and coarsening Solder ball After solidification 3h. 300h. ⊲ Crack initiation and propagation along the phase boundary Tin-lead solders in electronic devices (mobile phones, PCs, micro-chips,...) Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 3

  4. Literature Phase separation and coarsening ⊲ Phase field models of Cahn-Hilliard type with elasticity Analysis: Carrive/Miranville/Pietrus 00, Garcke 00, Miranville 00/01, Bonetti/Colli/Dreyer/Gilardi/Schimperna/Sprekels 02, Pawłow/Zaja ¸czkowski 08/09/10 Damage ⊲ Elliptic system/differential inclusion Engineering: Marigo 93, Frémond/Nedjar 96, Bourdin 00, Miehe 07, Ubachs/Schreurs/Geers 06, Hakim/Karma 09 Analysis: Mielke/Roubíˇ cek 03/10, Bonetti/Schimperna/Segatti 05, Thomas 10, Knees/Rossi/Zanini 11, Rocca/Rossi 12 Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 4

  5. Literature Phase separation and coarsening ⊲ Phase field models of Cahn-Hilliard type with elasticity Analysis: Carrive/Miranville/Pietrus 00, Garcke 00, Miranville 00/01, Bonetti/Colli/Dreyer/Gilardi/Schimperna/Sprekels 02, Pawłow/Zaja ¸czkowski 08/09/10 ⇓ Aim ⊲ Developing of a phase field model for phase separation and damage processes ⊲ Analytical properties, numerical simulations ⇑ Damage ⊲ Elliptic system/differential inclusion Engineering: Marigo 93, Frémond/Nedjar 96, Bourdin 00, Miehe 07, Ubachs/Schreurs/Geers 06, Hakim/Karma 09 Analysis: Mielke/Roubíˇ cek 03/10, Bonetti/Schimperna/Segatti 05, Thomas 10, Knees/Rossi/Zanini 11, Rocca/Rossi 12 Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 4

  6. New phase field model - energy Two components c + , c − , c + + c − = 1 ⇒ c = c + − c − = Variables c : concentration, u : displacement field z : damage, 0 ≤ z ≤ 1 Free energy � 1 2 | ∇ c | 2 + ψ ( c )+ 1 � 2 | ∇ z | 2 + h ( z )+ W ( c , e ( u ) , z ) � E ( c , u , z ) = ˆ d x Ω ψ ( c ) Chemical energy density ψ : polynomial or logarithmic type Elastic energy density ∇ u +( ∇ u ) T � e ( u ) = 1 � c c − c + 2 W 1 ( c , e ( u )) = 1 2 ( e ( u ) − e ∗ ( c )) : C ( c )( e ( u ) − e ∗ ( c )) e ∗ ( c ) : eigenstrain, C ( c ) : stiffness tensor (sym., pos. def.), W ( c , e ( u ) , z ) = ( g ( z )+ δ ) W 1 ( c , e ( u )) , δ > 0 , g : monotonically increasing with g ( 0 ) = 0 , g ∈ C 1 ([ 0 , 1 ]) . Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 5

  7. New phase field model - energy and dissipation Free energy � 1 2 | ∇ c | 2 + ψ ( c )+ 1 � 2 | ∇ z | 2 + h ( z )+ W ( c , e ( u ) , z ) � E ( c , u , z ) = ˆ d x Ω Dissipation potential � β � 2 | ∂ t z | 2 − α∂ t z � R ( ∂ t z ) = ˆ d x Ω Constraints for the damage variable 0 ≤ z ≤ 1 , ( z = 0 completely damaged, z = 1 undamaged) ∂ t z ≤ 0 unidirectional process R ( ∂ t z ) � E ( c , u , z ) : = ˆ E ( c , u , z )+ Ω I [ 0 , 1 ] ( z ) d x � R ( ∂ t z ) : = R ( ∂ t z )+ Ω I ( − ∞ , 0 ] ( ∂ t z ) d x ˆ ∂ t z Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 6

  8. New phase field model - evolution system � � 1 2 | ∇ c | 2 + ψ ( c )+ 1 2 | ∇ z | 2 + h ( z )+ W ( c , e ( u ) , z )+ I [ 0 , 1 ] ( z ) � E ( c , u , z ) = d x Free energy Ω � β � � R ( ∂ t z ) = 2 | ∂ t z | 2 − α∂ t z + I ( − ∞ , 0 ] ( ∂ t z ) d x Dissipation potential Ω Evolution system (ES) in classical formulation Evolution law for the mass concentration ∂ t c = − div J , J = − M ∇ w w = D c E ( c , u , z ) = −△ c + ψ ′ ( c )+ W , c ( c , e ( u ) , z ) Quasistatic balance of forces 0 = D u E ( c , u , z ) = div W , e ( c , e ( u ) , z ) � � Evolution law for the damage variable 0 ∈ D z E ( c , u , z )+ ∂ R ( ∂ t z ) ⇒ 0 = −△ z + h ′ ( z )+ W , z ( c , e ( u ) , z )+ r + β∂ t z − α + s with ⇐ r ∈ ∂ I [ 0 , 1 ] ( z ) , s ∈ ∂ I ( − ∞ , 0 ] ( ∂ t z ) . Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 7

  9. New phase field model - initial-boundary conditions Assumptions Ω ⊂ R N bounded Lipschitz domain, D ⊂ ∂ Ω with H n − 1 ( D ) > 0 . Initial-boundary conditions (IBC) u ( t ) = b ( t ) on D × ( 0 , T ) , Dirichlet conditions M ∇ w · ν = 0 on ∂ Ω × ( 0 , T ) , Neumann conditions ∇ c · ν = 0 on ∂ Ω × ( 0 , T ) , ∇ z · ν = 0 on ∂ Ω × ( 0 , T ) , W , e · ν = 0 on ∂ ( Ω \ D ) × ( 0 , T ) , c ( 0 ) = c 0 , Initial conditions with 0 ≤ z 0 ≤ 1 . z ( 0 ) = z 0 Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 8

  10. New phase field model - growth assumptions Assumptions: ⊲ ψ ∈ C 1 ( R ) , h ∈ C 1 ([ 0 , 1 ]) , W 1 ∈ C 1 ( R × R N × N ) , W 1 ( c , e ) = W 1 ( c , ( e ) t ) . Growth assumptions for W 1 : ⊲ | W 1 ( c , e ) | ≤ C ( | c | 2 + | e | 2 + 1 ) , ⊲ η | e 1 − e 2 | 2 ≤ ( W 1 , e ( c , e 1 ) − W 1 , e ( c , e 2 )) : ( e 1 − e 2 ) , ⊲ | W 1 , e ( c , e 1 + e 2 ) | ≤ C ( W 1 ( c , e 1 , z )+ | e 2 | + 1 ) , ⊲ | W 1 , c ( c , e ) | ≤ C ( | c | 2 + | e | 2 + 1 ) . Growth assumption for ψ : ⊲ | ψ ′ ( c ) | ≤ C ( | c | 2 ∗ / 2 + 1 ) Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 9

  11. New phase field model - weak formulation Weak formulation q = ( c , w , u , z ) is a weak solution of (ES) with (IBC) if ⊲ c ∈ L ∞ ( 0 , T ; H 1 ( Ω )) , w ∈ L 2 ( 0 , T ; H 1 ( Ω )) , u ∈ L ∞ ( 0 , T ; H 1 ( Ω ; R N )) , z ∈ L ∞ ( 0 , T ; H 1 ( Ω )) ∩ H 1 ( 0 , T ; L 2 ( Ω )) , 0 ≤ z ≤ 1 a.e. and ∂ t z ≤ 0 a.e. ⊲ for all ξ ∈ L 2 ( 0 , T ; H 1 ( Ω )) , ∂ t ξ ∈ L 2 ( Ω T ) and ξ ( T ) = 0 : � � ( c − c 0 ) ∂ t ξ d x d s = − M ∇ w · ∇ ξ d x d s Ω T Ω T ⊲ for all ξ ∈ H 1 ( Ω ) ∩ L ∞ ( Ω ) and a.e. t ∈ ( 0 , T ) : � � � � Ω w ξ d x = ∇ c · ∇ ξ + ψ ′ ( c ) ξ + W , c ( c , e ( u ) , z ) ξ d x Ω ⊲ for all ξ ∈ H 1 ( Ω , R N ) with ξ = 0 on D and a.e. t ∈ ( 0 , T ) : � Ω W , e ( c , e ( u ) , z ) : e ( ξ ) d x = 0 Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 10

  12. New phase field model - weak formulation Weak formulation (continued) ⊲ Variational inequality − ( Ω ) ∩ L ∞ ( Ω ) and a.e. t ∈ ( 0 , T ) : for all ξ ∈ H 1 � � � ∇ z · ∇ ξ + h ′ ( z ) ξ + W , z ( c , e ( u ) , z ) ξ − α ξ + β∂ t z ξ d x + � r , ξ � , 0 ≤ (1) Ω where r ∈ ∂ I H 1 + ( Ω ) ∩ L ∞ ( Ω ) ( z ) . ⊲ Energy estimate for a.e. t ∈ ( 0 , T ) : � t � � − α∂ t z + β | ∂ t z | 2 + M ∇ w · ∇ w � E ( c ( t ) , u ( t ) , z ( t ))+ d x d s Ω 0 � t � Ω W , e ( c , e ( u ) , z ) : e ( ∂ t b ) d x d s ≤ E ( c ( 0 ) , u ( 0 ) , z ( 0 ))+ (2) 0 Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 11

  13. New phase field model - weak formulation Weak formulation (continued) ⊲ Variational inequality − ( Ω ) ∩ L ∞ ( Ω ) and a.e. t ∈ ( 0 , T ) : for all ξ ∈ H 1 � � � ∇ z · ∇ ξ + h ′ ( z ) ξ + W , z ( c , e ( u ) , z ) ξ − α ξ + β∂ t z ξ d x + � r , ξ � , 0 ≤ (1) Ω where r ∈ ∂ I H 1 + ( Ω ) ∩ L ∞ ( Ω ) ( z ) . ⊲ Energy estimate for a.e. t ∈ ( 0 , T ) : � t � � − α∂ t z + β | ∂ t z | 2 + M ∇ w · ∇ w � E ( c ( t ) , u ( t ) , z ( t ))+ d x d s Ω 0 � t � Ω W , e ( c , e ( u ) , z ) : e ( ∂ t b ) d x d s ≤ E ( c ( 0 ) , u ( 0 ) , z ( 0 ))+ (2) 0 Theorem (Heinemann & K.) For smooth solutions, (1) and (2) are equivalent to 0 ∈ ∂ R ( ∂ t z )+ ∂ z E ( c , u , z ) . Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 11

  14. Main result - existence Notion of weak solutions ⊲ Cahn-Hilliard system with elasticity ⊲ variational inequality for z ⊲ energy estimate Assumptions ⊲ Initial and boundary conditions ⊲ Conditions for ψ , h and W Theorem (Heinemann & K.) Existence of weak solutions Let b ∈ W 1 , 1 ([ 0 , T ] ; W 1 , ∞ ( Ω ; R N )) , c 0 ∈ H 1 ( Ω ) and z 0 ∈ H 1 ( Ω ) . Then there exists a weak solution ( c , u , w , z ) of (ES) with the previous initial and bound- ary conditions. Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 12

  15. Numerical simulations (Müller, WIAS) ⊲ loading proportional to the time t ⊲ initial damage seed ⊲ different thermal expansions of the phases Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 13

  16. Numerical simulations Damage field is constant in time Phase separation and damage · Levico, 11. September 2013 · C. Kraus · Page 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend