ma 207 differential equations ii
play

MA-207 Differential Equations II Ronnie Sebastian Department of - PowerPoint PPT Presentation

MA-207 Differential Equations II Ronnie Sebastian Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76 1 / 47 References Elementary differential equations with boundary value problems by William F. Trench


  1. Theorem For any power series, ∞ � a n ( x − x 0 ) n n =0 exactly one of these statements is true. 1 The power series converges only for x = x 0 . 2 The power series converges for all values of x . 3 There is a positive number 0 < R < ∞ such that the power series converges if | x − x 0 | < R and diverges if | x − x 0 | > R . R is called the radius of convergence of the power series. 11 / 47

  2. Theorem For any power series, ∞ � a n ( x − x 0 ) n n =0 exactly one of these statements is true. 1 The power series converges only for x = x 0 . 2 The power series converges for all values of x . 3 There is a positive number 0 < R < ∞ such that the power series converges if | x − x 0 | < R and diverges if | x − x 0 | > R . R is called the radius of convergence of the power series. We define R = 0 in case (i) and R = ∞ in case (ii). 11 / 47

  3. Theorem For any power series, ∞ � a n ( x − x 0 ) n n =0 exactly one of these statements is true. 1 The power series converges only for x = x 0 . 2 The power series converges for all values of x . 3 There is a positive number 0 < R < ∞ such that the power series converges if | x − x 0 | < R and diverges if | x − x 0 | > R . R is called the radius of convergence of the power series. We define R = 0 in case (i) and R = ∞ in case (ii). Question. How to compute the radius of convergence? 11 / 47

  4. Theorem (Ratio test) If a n � = 0 for all n and � � a n +1 � � lim � = L � � a n n →∞ � 12 / 47

  5. Theorem (Ratio test) If a n � = 0 for all n and � � a n +1 � � lim � = L � � a n n →∞ � n →∞ | a n | 1 /n = L (Root test) lim sup 12 / 47

  6. Theorem (Ratio test) If a n � = 0 for all n and � � a n +1 � � lim � = L � � a n n →∞ � n →∞ | a n | 1 /n = L (Root test) lim sup ∞ a n ( x − x 0 ) n is � Then radius of convergence of the power series n =0 R = 1 /L . 12 / 47

  7. Theorem (Ratio test) If a n � = 0 for all n and � � a n +1 � � lim � = L � � a n n →∞ � n →∞ | a n | 1 /n = L (Root test) lim sup ∞ a n ( x − x 0 ) n is � Then radius of convergence of the power series n =0 R = 1 /L . For L = 0 , we get R = ∞ and for L = ∞ , we get R = 0 . 12 / 47

  8. Theorem Let R > 0 be the radius of convergence of the power series ∞ � a n ( x − x 0 ) n n =0 Then the power series converges (absolutely) for all x ∈ ( x 0 − R, x 0 + R ) . 13 / 47

  9. Theorem Let R > 0 be the radius of convergence of the power series ∞ � a n ( x − x 0 ) n n =0 Then the power series converges (absolutely) for all x ∈ ( x 0 − R, x 0 + R ) . For R = ∞ , we write ( x 0 − R, x 0 + R ) = ( −∞ , ∞ ) = R . 13 / 47

  10. Theorem Let R > 0 be the radius of convergence of the power series ∞ � a n ( x − x 0 ) n n =0 Then the power series converges (absolutely) for all x ∈ ( x 0 − R, x 0 + R ) . For R = ∞ , we write ( x 0 − R, x 0 + R ) = ( −∞ , ∞ ) = R . The open interval ( x 0 − R, x 0 + R ) is called the interval of convergence of the power series. 13 / 47

  11. Example Find the radius of convergence and interval of convergence (if R > 0 ) of the following three series ∞ ∞ ∞ ( − 1) n x n n ! x n ( ii ) � � � 2 n n 3 ( x − 1) n ( i ) ( iii ) n n 0 10 0 14 / 47

  12. Example Find the radius of convergence and interval of convergence (if R > 0 ) of the following three series ∞ ∞ ∞ ( − 1) n x n n ! x n ( ii ) � � � 2 n n 3 ( x − 1) n ( i ) ( iii ) n n 0 10 0 � a n +1 � � ( n + 1)! � � � � � ( i ) lim � = lim � = lim n →∞ ( n + 1) = ∞ � � � � a n n ! n →∞ n →∞ � � So R = 0 in case (i). 14 / 47

  13. Example Find the radius of convergence and interval of convergence (if R > 0 ) of the following three series ∞ ∞ ∞ ( − 1) n x n n ! x n ( ii ) � � � 2 n n 3 ( x − 1) n ( i ) ( iii ) n n 0 10 0 � a n +1 � � ( n + 1)! � � � � � ( i ) lim � = lim � = lim n →∞ ( n + 1) = ∞ � � � � a n n ! n →∞ n →∞ � � So R = 0 in case (i). Similarly, in case (ii) R = ∞ and in case (iii) R = 1 / 2 . 14 / 47

  14. Example Find the radius of convergence and interval of convergence (if R > 0 ) of the following three series ∞ ∞ ∞ ( − 1) n x n n ! x n ( ii ) � � � 2 n n 3 ( x − 1) n ( i ) ( iii ) n n 0 10 0 � a n +1 � � ( n + 1)! � � � � � ( i ) lim � = lim � = lim n →∞ ( n + 1) = ∞ � � � � a n n ! n →∞ n →∞ � � So R = 0 in case (i). Similarly, in case (ii) R = ∞ and in case (iii) R = 1 / 2 . Interval of convergence : in case (ii) ( −∞ , ∞ ) and in case (iii) (1 / 2 , 3 / 2) 14 / 47

  15. Theorem Let R be the radius of convergence of the power series ∞ � a n ( x − x 0 ) n . We assume R > 0 n =0 15 / 47

  16. Theorem Let R be the radius of convergence of the power series ∞ � a n ( x − x 0 ) n . We assume R > 0 n =0 • We can define a function f : ( x 0 − R, x 0 + R ) → R by ∞ � a n ( x − x 0 ) n f ( x ) = n =0 15 / 47

  17. Theorem Let R be the radius of convergence of the power series ∞ � a n ( x − x 0 ) n . We assume R > 0 n =0 • We can define a function f : ( x 0 − R, x 0 + R ) → R by ∞ � a n ( x − x 0 ) n f ( x ) = n =0 • f is infinitely differentiable ∀ x ∈ ( x 0 − R, x 0 + R ) . 15 / 47

  18. Theorem Let R be the radius of convergence of the power series ∞ � a n ( x − x 0 ) n . We assume R > 0 n =0 • We can define a function f : ( x 0 − R, x 0 + R ) → R by ∞ � a n ( x − x 0 ) n f ( x ) = n =0 • f is infinitely differentiable ∀ x ∈ ( x 0 − R, x 0 + R ) . • The successive derivatives of f can be computed by differentiating the power series term-by-term, that is ∞ � f ′ ( x ) = na n ( x − x 0 ) n − 1 . . . n =0 ∞ f ( k ) ( x ) = � n ( n − 1) . . . ( n − k + 1) a n ( x − x 0 ) n − k n =0 15 / 47

  19. Theorem (continued . . . ) • The power series representing the derivatives f ( n ) ( x ) have same radius of convergence R . 16 / 47

  20. Theorem (continued . . . ) • The power series representing the derivatives f ( n ) ( x ) have same radius of convergence R . • We can determine the coefficients a n (in terms of derivatives of f at x 0 ) as f ′ ( x 0 ) = a 1 , f ′′ ( x 0 ) = 2 a 2 , . . . f ( x 0 ) = a 0 , In general, a n = f ( n ) ( x 0 ) n ! 16 / 47

  21. Theorem (continued . . . ) • The power series representing the derivatives f ( n ) ( x ) have same radius of convergence R . • We can determine the coefficients a n (in terms of derivatives of f at x 0 ) as f ′ ( x 0 ) = a 1 , f ′′ ( x 0 ) = 2 a 2 , . . . f ( x 0 ) = a 0 , In general, a n = f ( n ) ( x 0 ) n ! ∞ � a n ( x − x 0 ) n • We can also integrate the function f ( x ) = 0 term-wise that is if [ a, b ] ⊂ ( x 0 − R, x 0 + R ) , then � b � b ∞ ∞ a n ( x − x 0 ) n dx = � � n + 1( x − x 0 ) n +1 f ( x ) dx = a n a a n =0 0 16 / 47

  22. Example (Power series representation of elementary functions) ∞ x n (i) e x = � − ∞ < x < ∞ n ! 0 17 / 47

  23. Example (Power series representation of elementary functions) ∞ x n (i) e x = � − ∞ < x < ∞ n ! 0 ∞ x 2 n +1 � ( − 1) n (ii) sin x = − ∞ < x < ∞ (2 n + 1)! 0 17 / 47

  24. Example (Power series representation of elementary functions) ∞ x n (i) e x = � − ∞ < x < ∞ n ! 0 ∞ x 2 n +1 � ( − 1) n (ii) sin x = − ∞ < x < ∞ (2 n + 1)! 0 ∞ 1 � x n (iii) 1 − x = − 1 < x < 1 0 17 / 47

  25. Example (Power series representation of elementary functions) ∞ x n (i) e x = � − ∞ < x < ∞ n ! 0 ∞ x 2 n +1 � ( − 1) n (ii) sin x = − ∞ < x < ∞ (2 n + 1)! 0 ∞ 1 � x n (iii) 1 − x = − 1 < x < 1 0 ∞ x 2 n +1 d ( − 1) n d � � � (iv) dx (sin x ) = dx (2 n + 1)! 0 17 / 47

  26. Example (Power series representation of elementary functions) ∞ x n (i) e x = � − ∞ < x < ∞ n ! 0 ∞ x 2 n +1 � ( − 1) n (ii) sin x = − ∞ < x < ∞ (2 n + 1)! 0 ∞ 1 � x n (iii) 1 − x = − 1 < x < 1 0 ∞ x 2 n +1 d ( − 1) n d � � � (iv) dx (sin x ) = dx (2 n + 1)! 0 ∞ ( − 1) n x 2 n � = (2 n )! = cos x 0 17 / 47

  27. Theorem (i) Power series representation of f in an open interval I containing x 0 is unique, that is, if ∞ ∞ a n ( x − x 0 ) n = � � b n ( x − x 0 ) n f ( x ) = 0 0 for all x ∈ I , then a n = b n ∀ n . 18 / 47

  28. Theorem (i) Power series representation of f in an open interval I containing x 0 is unique, that is, if ∞ ∞ a n ( x − x 0 ) n = � � b n ( x − x 0 ) n f ( x ) = 0 0 for all x ∈ I , then a n = b n ∀ n . (ii) If ∞ a n ( x − x 0 ) n = 0 � 0 for all x ∈ I , then a n = 0 for all n . 18 / 47

  29. Theorem (i) Power series representation of f in an open interval I containing x 0 is unique, that is, if ∞ ∞ a n ( x − x 0 ) n = � � b n ( x − x 0 ) n f ( x ) = 0 0 for all x ∈ I , then a n = b n ∀ n . (ii) If ∞ a n ( x − x 0 ) n = 0 � 0 for all x ∈ I , then a n = 0 for all n . Proof. (i) a n = f ( n ) ( x 0 ) = b n for all n. n ! It is clear that (ii) follows from (i). 18 / 47

  30. Algebraic operations on power series Definition ∞ ∞ � � a n ( x − x 0 ) n b n ( x − x 0 ) n If f ( x ) = g ( x ) = 0 0 have radius of convergence R 1 and R 2 respectively, then ∞ � ( c 1 a n + c 2 b n )( x − x 0 ) n c 1 f ( x ) + c 2 g ( x ) := 0 has radius of convergence R ≥ min { R 1 , R 2 } for c 1 , c 2 ∈ R . 19 / 47

  31. Algebraic operations on power series Definition ∞ ∞ � � a n ( x − x 0 ) n b n ( x − x 0 ) n If f ( x ) = g ( x ) = 0 0 have radius of convergence R 1 and R 2 respectively, then ∞ � ( c 1 a n + c 2 b n )( x − x 0 ) n c 1 f ( x ) + c 2 g ( x ) := 0 has radius of convergence R ≥ min { R 1 , R 2 } for c 1 , c 2 ∈ R . Further, we can multiply the series as if they were polynomials, that is ∞ � c n ( x − x 0 ) n ; f ( x ) g ( x ) = c n = a 0 b n + a 1 b n − 1 + . . . + a n b 0 0 It also has radius of convergence R ≥ min { R 1 , R 2 } . 19 / 47

  32. Example Find the power series expansion for cosh x in terms of powers of x n . 20 / 47

  33. Example Find the power series expansion for cosh x in terms of powers of x n . cosh x = 1 2 e x + 1 2 e − x 20 / 47

  34. Example Find the power series expansion for cosh x in terms of powers of x n . cosh x = 1 2 e x + 1 2 e − x ∞ ∞ x n ( − 1) n x n = 1 n ! + 1 � � 2 2 n ! n =0 n =0 20 / 47

  35. Example Find the power series expansion for cosh x in terms of powers of x n . cosh x = 1 2 e x + 1 2 e − x ∞ ∞ x n ( − 1) n x n = 1 n ! + 1 � � 2 2 n ! n =0 n =0 ∞ 2 [1 + ( − 1) n ] x n 1 � = n ! n =0 20 / 47

  36. Example Find the power series expansion for cosh x in terms of powers of x n . cosh x = 1 2 e x + 1 2 e − x ∞ ∞ x n ( − 1) n x n = 1 n ! + 1 � � 2 2 n ! n =0 n =0 ∞ 2 [1 + ( − 1) n ] x n 1 � = n ! n =0 ∞ x 2 n � = (2 n )! n =0 20 / 47

  37. Example Find the power series expansion for cosh x in terms of powers of x n . cosh x = 1 2 e x + 1 2 e − x ∞ ∞ x n ( − 1) n x n = 1 n ! + 1 � � 2 2 n ! n =0 n =0 ∞ 2 [1 + ( − 1) n ] x n 1 � = n ! n =0 ∞ x 2 n � = (2 n )! n =0 Since radius of convergence for Taylor series of e x and e − x are ∞ , the power series expansion of cosh x is valid on R . 20 / 47

  38. Shifting the summation index ∞ ∞ a n ( x − x 0 ) n = � � na n ( x − x 0 ) n − 1 ⇒ f ′ ( x ) = If f ( x ) = n =0 n =1 21 / 47

  39. Shifting the summation index ∞ ∞ a n ( x − x 0 ) n = � � na n ( x − x 0 ) n − 1 ⇒ f ′ ( x ) = If f ( x ) = n =0 n =1 Let us rewrite the series for f ′ ( x ) in powers of ( x − x 0 ) n . Put r = n − 1 , we get ∞ � ( r + 1) a r +1 ( x − x 0 ) r f ′ ( x ) = r =0 21 / 47

  40. Shifting the summation index ∞ ∞ a n ( x − x 0 ) n = � � na n ( x − x 0 ) n − 1 ⇒ f ′ ( x ) = If f ( x ) = n =0 n =1 Let us rewrite the series for f ′ ( x ) in powers of ( x − x 0 ) n . Put r = n − 1 , we get ∞ � ( r + 1) a r +1 ( x − x 0 ) r f ′ ( x ) = r =0 Similarly, ∞ f ( k ) ( x ) = � n ( n − 1) . . . ( n − k + 1) a n ( x − x 0 ) n − k n = k 21 / 47

  41. Shifting the summation index ∞ ∞ a n ( x − x 0 ) n = � � na n ( x − x 0 ) n − 1 ⇒ f ′ ( x ) = If f ( x ) = n =0 n =1 Let us rewrite the series for f ′ ( x ) in powers of ( x − x 0 ) n . Put r = n − 1 , we get ∞ � ( r + 1) a r +1 ( x − x 0 ) r f ′ ( x ) = r =0 Similarly, ∞ f ( k ) ( x ) = � n ( n − 1) . . . ( n − k + 1) a n ( x − x 0 ) n − k n = k ∞ � ( n + k )( n + k − 1) . . . ( n + 1) a n + k ( x − x 0 ) n = n =0 21 / 47

  42. Shifting the summation index ∞ ∞ a n ( x − x 0 ) n = � � na n ( x − x 0 ) n − 1 ⇒ f ′ ( x ) = If f ( x ) = n =0 n =1 Let us rewrite the series for f ′ ( x ) in powers of ( x − x 0 ) n . Put r = n − 1 , we get ∞ � ( r + 1) a r +1 ( x − x 0 ) r f ′ ( x ) = r =0 Similarly, ∞ f ( k ) ( x ) = � n ( n − 1) . . . ( n − k + 1) a n ( x − x 0 ) n − k n = k ∞ � ( n + k )( n + k − 1) . . . ( n + 1) a n + k ( x − x 0 ) n = n =0   ∞ b n ( x − x 0 ) n − k = � � b n + k ( x − x 0 ) n In general,   n = n 0 n = n 0 − k 21 / 47

  43. Example ∞ a n x n . Write ( x − 1) f ′′ as a power series around 0. � Let f ( x ) = n =0 22 / 47

  44. Example ∞ a n x n . Write ( x − 1) f ′′ as a power series around 0. � Let f ( x ) = n =0 ( x − 1) f ′′ = xf ′′ − f ′′ 22 / 47

  45. Example ∞ a n x n . Write ( x − 1) f ′′ as a power series around 0. � Let f ( x ) = n =0 ( x − 1) f ′′ = xf ′′ − f ′′ � ∞ � ∞ � n ( n − 1) a n x n − 2 � n ( n − 1) a n x n − 2 = x − n =2 n =2 22 / 47

  46. Example ∞ a n x n . Write ( x − 1) f ′′ as a power series around 0. � Let f ( x ) = n =0 ( x − 1) f ′′ = xf ′′ − f ′′ � ∞ � ∞ � n ( n − 1) a n x n − 2 � n ( n − 1) a n x n − 2 = x − n =2 n =2 ∞ ∞ n ( n − 1) a n x n − 1 − � � n ( n − 1) a n x n − 2 = n =2 n =2 22 / 47

  47. Example ∞ a n x n . Write ( x − 1) f ′′ as a power series around 0. � Let f ( x ) = n =0 ( x − 1) f ′′ = xf ′′ − f ′′ � ∞ � ∞ � n ( n − 1) a n x n − 2 � n ( n − 1) a n x n − 2 = x − n =2 n =2 ∞ ∞ n ( n − 1) a n x n − 1 − � � n ( n − 1) a n x n − 2 = n =2 n =2 ∞ ∞ ( n + 1) na n +1 x n − � � ( n + 2)( n + 1) a n +2 x n = n =1 n =0 22 / 47

  48. Example ∞ a n x n . Write ( x − 1) f ′′ as a power series around 0. � Let f ( x ) = n =0 ( x − 1) f ′′ = xf ′′ − f ′′ � ∞ � ∞ � n ( n − 1) a n x n − 2 � n ( n − 1) a n x n − 2 = x − n =2 n =2 ∞ ∞ n ( n − 1) a n x n − 1 − � � n ( n − 1) a n x n − 2 = n =2 n =2 ∞ ∞ ( n + 1) na n +1 x n − � � ( n + 2)( n + 1) a n +2 x n = n =1 n =0 ∞ � [( n + 1) na n +1 − ( n + 2)( n + 1) a n +2 ] x n = n =0 22 / 47

  49. Example (Solving ODE) Suppose ∞ � a n ( x − 1) n y ( x ) = n =0 for all x in an open interval I containing x 0 = 1 . 23 / 47

  50. Example (Solving ODE) Suppose ∞ � a n ( x − 1) n y ( x ) = n =0 for all x in an open interval I containing x 0 = 1 . Find the power series of y ′ and y ′′ in terms of x − 1 in the interval I . Use these to express the function (1 + x ) y ′′ + 2( x − 1) 2 y ′ + 3 y as a power series in x − 1 on I . 23 / 47

  51. Example (Solving ODE) Suppose ∞ � a n ( x − 1) n y ( x ) = n =0 for all x in an open interval I containing x 0 = 1 . Find the power series of y ′ and y ′′ in terms of x − 1 in the interval I . Use these to express the function (1 + x ) y ′′ + 2( x − 1) 2 y ′ + 3 y as a power series in x − 1 on I . Find necessary and sufficient conditions on the coefficients a n ’s, so that y ( x ) is a solution of the ODE (1 + x ) y ′′ + 2( x − 1) 2 y ′ + 3 y = 0 23 / 47

  52. Example (Continue . . . ) Solution. Write the ODE in ( x − 1) , that is (1 + x ) y ′′ + 2( x − 1) 2 y ′ + 3 y = ( x − 1) y ′′ + 2 y ′′ + 2( x − 1) 2 y ′ + 3 y 24 / 47

  53. Example (Continue . . . ) Solution. Write the ODE in ( x − 1) , that is (1 + x ) y ′′ + 2( x − 1) 2 y ′ + 3 y = ( x − 1) y ′′ + 2 y ′′ + 2( x − 1) 2 y ′ + 3 y Express each of ( x − 1) y ′′ , 2 y ′′ , 2( x − 1) 2 y ′ and 3 y as a power series in powers of ( x − 1) and add them. 24 / 47

  54. Example (Continue . . . ) Solution. Write the ODE in ( x − 1) , that is (1 + x ) y ′′ + 2( x − 1) 2 y ′ + 3 y = ( x − 1) y ′′ + 2 y ′′ + 2( x − 1) 2 y ′ + 3 y Express each of ( x − 1) y ′′ , 2 y ′′ , 2( x − 1) 2 y ′ and 3 y as a power series in powers of ( x − 1) and add them. ∞ ( x − 1) y ′′ = ( x − 1) � n ( n − 1) a n ( x − 1) n − 2 n =2 24 / 47

  55. Example (Continue . . . ) Solution. Write the ODE in ( x − 1) , that is (1 + x ) y ′′ + 2( x − 1) 2 y ′ + 3 y = ( x − 1) y ′′ + 2 y ′′ + 2( x − 1) 2 y ′ + 3 y Express each of ( x − 1) y ′′ , 2 y ′′ , 2( x − 1) 2 y ′ and 3 y as a power series in powers of ( x − 1) and add them. ∞ ( x − 1) y ′′ = ( x − 1) � n ( n − 1) a n ( x − 1) n − 2 n =2 ∞ � n ( n − 1) a n ( x − 1) n − 1 = n =2 24 / 47

  56. Example (Continue . . . ) Solution. Write the ODE in ( x − 1) , that is (1 + x ) y ′′ + 2( x − 1) 2 y ′ + 3 y = ( x − 1) y ′′ + 2 y ′′ + 2( x − 1) 2 y ′ + 3 y Express each of ( x − 1) y ′′ , 2 y ′′ , 2( x − 1) 2 y ′ and 3 y as a power series in powers of ( x − 1) and add them. ∞ ( x − 1) y ′′ = ( x − 1) � n ( n − 1) a n ( x − 1) n − 2 n =2 ∞ � n ( n − 1) a n ( x − 1) n − 1 = n =2 ∞ � ( n + 1) na n +1 ( x − 1) n = n =1 24 / 47

  57. Example (Continue . . . ) Solution. Write the ODE in ( x − 1) , that is (1 + x ) y ′′ + 2( x − 1) 2 y ′ + 3 y = ( x − 1) y ′′ + 2 y ′′ + 2( x − 1) 2 y ′ + 3 y Express each of ( x − 1) y ′′ , 2 y ′′ , 2( x − 1) 2 y ′ and 3 y as a power series in powers of ( x − 1) and add them. ∞ ( x − 1) y ′′ = ( x − 1) � n ( n − 1) a n ( x − 1) n − 2 n =2 ∞ � n ( n − 1) a n ( x − 1) n − 1 = n =2 ∞ � ( n + 1) na n +1 ( x − 1) n = n =1 ∞ � ( n + 1) na n +1 ( x − 1) n = n =0 24 / 47

  58. Example (Continue . . . ) ∞ 2 y ′′ = � 2 n ( n − 1) a n ( x − 1) n − 2 n =2 25 / 47

  59. Example (Continue . . . ) ∞ 2 y ′′ = � 2 n ( n − 1) a n ( x − 1) n − 2 n =2 ∞ � 2( n + 2)( n + 1) a n +2 ( x − 1) n = n =0 25 / 47

  60. Example (Continue . . . ) ∞ 2 y ′′ = � 2 n ( n − 1) a n ( x − 1) n − 2 n =2 ∞ � 2( n + 2)( n + 1) a n +2 ( x − 1) n = n =0 ∞ 2( x − 1) 2 y ′ = 2( x − 1) 2 � na n ( x − 1) n − 1 n =1 25 / 47

  61. Example (Continue . . . ) ∞ 2 y ′′ = � 2 n ( n − 1) a n ( x − 1) n − 2 n =2 ∞ � 2( n + 2)( n + 1) a n +2 ( x − 1) n = n =0 ∞ 2( x − 1) 2 y ′ = 2( x − 1) 2 � na n ( x − 1) n − 1 n =1 ∞ � 2 na n ( x − 1) n +1 = n =1 25 / 47

  62. Example (Continue . . . ) ∞ 2 y ′′ = � 2 n ( n − 1) a n ( x − 1) n − 2 n =2 ∞ � 2( n + 2)( n + 1) a n +2 ( x − 1) n = n =0 ∞ 2( x − 1) 2 y ′ = 2( x − 1) 2 � na n ( x − 1) n − 1 n =1 ∞ � 2 na n ( x − 1) n +1 = n =1 ∞ � 2( n − 1) a n − 1 ( x − 1) n = n =2 25 / 47

  63. Example (Continue . . . ) ∞ 2 y ′′ = � 2 n ( n − 1) a n ( x − 1) n − 2 n =2 ∞ � 2( n + 2)( n + 1) a n +2 ( x − 1) n = n =0 ∞ 2( x − 1) 2 y ′ = 2( x − 1) 2 � na n ( x − 1) n − 1 n =1 ∞ � 2 na n ( x − 1) n +1 = n =1 ∞ � 2( n − 1) a n − 1 ( x − 1) n = n =2 ∞ � 2( n − 1) a n − 1 ( x − 1) n = ( a − 1 = 0) n =0 25 / 47

  64. Example (Continue . . . ) We have 26 / 47

  65. Example (Continue . . . ) We have ∞ ( x − 1) y ′′ = � ( n + 1) na n +1 ( x − 1) n n =0 26 / 47

  66. Example (Continue . . . ) We have ∞ ( x − 1) y ′′ = � ( n + 1) na n +1 ( x − 1) n n =0 ∞ 2 y ′′ = � 2( n + 2)( n + 1) a n +2 ( x − 1) n n =0 26 / 47

  67. Example (Continue . . . ) We have ∞ ( x − 1) y ′′ = � ( n + 1) na n +1 ( x − 1) n n =0 ∞ 2 y ′′ = � 2( n + 2)( n + 1) a n +2 ( x − 1) n n =0 ∞ 2( x − 1) 2 y ′ = � 2( n − 1) a n − 1 ( x − 1) n ( a − 1 = 0) n =0 Now we get 26 / 47

  68. Example (Continue . . . ) We have ∞ ( x − 1) y ′′ = � ( n + 1) na n +1 ( x − 1) n n =0 ∞ 2 y ′′ = � 2( n + 2)( n + 1) a n +2 ( x − 1) n n =0 ∞ 2( x − 1) 2 y ′ = � 2( n − 1) a n − 1 ( x − 1) n ( a − 1 = 0) n =0 Now we get ∞ ( x − 1) y ′′ + 2 y ′′ + 2( x − 1) 2 y ′ + 3 y = � b n ( x − 1) n n =0 26 / 47

  69. Example (Continue . . . ) We have ∞ ( x − 1) y ′′ = � ( n + 1) na n +1 ( x − 1) n n =0 ∞ 2 y ′′ = � 2( n + 2)( n + 1) a n +2 ( x − 1) n n =0 ∞ 2( x − 1) 2 y ′ = � 2( n − 1) a n − 1 ( x − 1) n ( a − 1 = 0) n =0 Now we get ∞ ( x − 1) y ′′ + 2 y ′′ + 2( x − 1) 2 y ′ + 3 y = � b n ( x − 1) n n =0 where 26 / 47

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend