rational function approximation
play

Rational function approximation Rational function of degree N = n + m - PowerPoint PPT Presentation

Rational function approximation Rational function of degree N = n + m is written as q ( x ) = p 0 + p 1 x + + p n x n r ( x ) = p ( x ) q 0 + q 1 x + + q m x m Now we try to approximate a function f on an interval containing 0


  1. Rational function approximation Rational function of degree N = n + m is written as q ( x ) = p 0 + p 1 x + · · · + p n x n r ( x ) = p ( x ) q 0 + q 1 x + · · · + q m x m Now we try to approximate a function f on an interval containing 0 using r ( x ). WLOG, we set q 0 = 1, and will need to determine the N + 1 unknowns p 0 , . . . , p n , q 1 , . . . , q m . Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 240

  2. Pad´ e approximation The idea of Pad´ e approximation is to find r ( x ) such that f ( k ) (0) = r ( k ) (0) , k = 0 , 1 , . . . , N This is an extension of Taylor series but in the rational form. Denote the Maclaurin series expansion f ( x ) = � ∞ i =0 a i x i . Then i =0 q i x i − � n � ∞ i =0 a i x i � m i =0 p i x i f ( x ) − r ( x ) = q ( x ) If we want f ( k ) (0) − r ( k ) (0) = 0 for k = 0 , . . . , N , we need the numerator to have 0 as a root of multiplicity N + 1. Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 241

  3. Pad´ e approximation This turns out to be equivalent to k � a i q k − i = p k , k = 0 , 1 , . . . , N i =0 for convenience we used convention p n +1 = · · · = p N = 0 and q m +1 = · · · = q N = 0. From these N + 1 equations, we can determine the N + 1 unknowns: p 0 , p 1 , . . . , p n , q 1 , . . . , q m Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 242

  4. Pad´ e approximation Example e approximation to e − x of degree 5 with n = 3 and Find the Pad´ m = 2. Solution. We first write the Maclaurin series of e − x as ∞ ( − 1) i e − x = 1 − x + 1 2 x 2 − 1 6 x 3 + 1 24 x 4 + · · · = � x i i ! i =0 Then for r ( x ) = p 0 + p 1 x + p 2 x 2 + p 3 x 3 , we need 1+ q 1 x + q 2 x 2 1 − x + 1 2 x 2 − 1 � 6 x 3 + · · · � (1+ q 1 x + q 2 x 2 ) − p 0 + p 1 x + p 2 x 2 + p 3 x 3 to have 0 coefficients for terms 1 , x , . . . , x 5 . Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 243

  5. Pad´ e approximation Solution. (cont.) By solving this, we get p 0 , p 1 , p 2 , q 1 , q 2 and hence 20 x 2 − 1 r ( x ) = 1 − 3 5 x + 3 60 x 3 1 + 2 5 x + 1 20 x 2 e − x | e − x − P 5 ( x ) | | e − x − r ( x ) | x P 5 ( x ) r ( x ) 8.64 × 10 − 8 7.55 × 10 − 9 0.2 0.81873075 0.81873067 0.81873075 5.38 × 10 − 6 4.11 × 10 − 7 0.4 0.67032005 0.67031467 0.67031963 5.96 × 10 − 5 4.00 × 10 − 6 0.6 0.54881164 0.54875200 0.54880763 3.26 × 10 − 4 1.93 × 10 − 5 0.8 0.44932896 0.44900267 0.44930966 1.21 × 10 − 3 6.33 × 10 − 5 1.0 0.36787944 0.36666667 0.36781609 where P 5 ( x ) is Maclaurin polynomial of degree 5 for comparison. Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 244

  6. Chebyshev rational function approximation To obtain more uniformly accurate approximation, we can use Chebyshev polynomials T k ( x ) in Pad´ e approximation framework. For N = n + m , we use � n k =0 p k T k ( x ) r ( x ) = � m k =0 q k T k ( x ) where q 0 = 1. Also write f ( x ) using Chebyshev polynomials as ∞ � f ( x ) = a k T k ( x ) k =0 Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 245

  7. Chebyshev rational function approximation Now we have � ∞ k =0 a k T k ( x ) � m k =0 q k T k ( x ) − � n k =0 p k T k ( x ) f ( x ) − r ( x ) = � m k =0 q k T k ( x ) We again seek for p 0 , . . . , p n , q 1 , . . . , q m such that coefficients of 1 , x , . . . , x N are 0. To that end, the computations can be simplified due to T i ( x ) T j ( x ) = 1 � � T i + j ( x ) + T | i − j | ( x ) 2 Also note that we also need to compute Chebyshev series coefficients a k first. Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 246

  8. Chebyshev rational function approximation Example Approximate e − x using the Chebyshev rational approximation of degree n = 3 and m = 2. The result is r T ( x ). e − x | e − x − r ( x ) | | e − x − r T ( x ) | x r ( x ) r T ( x ) 7.55 × 10 − 9 5.66 × 10 − 6 0.2 0.81873075 0.81873075 0.81872510 4.11 × 10 − 7 6.95 × 10 − 6 0.4 0.67032005 0.67031963 0.67031310 4.00 × 10 − 6 1.28 × 10 − 6 0.6 0.54881164 0.54880763 0.54881292 1.93 × 10 − 5 9.13 × 10 − 6 0.8 0.44932896 0.44930966 0.44933809 6.33 × 10 − 5 7.89 × 10 − 6 1.0 0.36787944 0.36781609 0.36787155 where r ( x ) is the standard Pad´ e approximation shown earlier. Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 247

  9. Trigonometric polynomial approximation Recall the Fourier series uses a set of 2 n orthogonal functions with respect to weight w ≡ 1 on [ − π, π ]: φ 0 ( x ) = 1 2 φ k ( x ) = cos kx , k = 1 , 2 , . . . , n φ n + k ( x ) = sin kx , k = 1 , 2 , . . . , n − 1 We denote the set of linear combinations of φ 0 , φ 1 , . . . , φ 2 n − 1 by T n , called the set of trigonometric polynomials of degree ≤ n . Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 248

  10. Trigonometric polynomial approximation For a function f ∈ C [ − π, π ], we want to find S n ∈ T n of form n − 1 S n ( x ) = a 0 � 2 + a n cos nx + ( a k cos kx + b k sin kx ) k =1 to minimize the least squares error � π | f ( x ) − S n ( x ) | 2 d x E ( a 0 , . . . , a n , b 1 , . . . , b n − 1 ) = − π Due to orthogonality of Fourier series φ 0 , . . . , φ 2 n − 1 , we get � π � π a k = 1 b k = 1 f ( x ) cos kx d x , f ( x ) sin kx d x π π − π − π Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 249

  11. Trigonometric polynomial approximation Example Approximate f ( x ) = | x | for x ∈ [ − π, π ] using trigonometric polynomial from T n . � π Solution. It is easy to check that a 0 = 1 − π | x | d x = π and π � π a k = 1 2 π k 2 (( − 1) k − 1) , | x | cos kx d x = k = 1 , 2 , . . . , n π − π � π b k = 1 | x | sin kx d x = 0 , k = 1 , 2 , . . . , n − 1 π − π Therefore ( − 1) k − 1 n 2 + 2 S n ( x ) = π � cos kx k 2 π k =1 Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 250

  12. Trigonometric polynomial approximation S n ( x ) for the first few n are shown below: y y � � x � π y � S 3 ( x ) � � 4 4 π cos x � cos 3 x 2 9 π π y � S 1 ( x ) � S 2 ( x ) � � 4 π cos x 2 π π y � S 0 ( x ) � π 2 2 x π π � π π � 2 2 Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 251

  13. Discrete trigonometric approximation If we have 2 m paired data points { ( x j , y j ) } 2 m − 1 where x j are j =0 equally spaced on [ − π, π ], i.e., � j � x j = − π + j = 0 , 1 , . . . , 2 m − 1 π, m Then we can also seek for S n ∈ T n such that the discrete least square error below is minimized: 2 m − 1 � ( y j − S n ( x j )) 2 E ( a 0 , . . . , a n , b 1 , . . . , b n − 1 ) = j =0 Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 252

  14. Discrete trigonometric approximation Theorem Define 2 m − 1 2 m − 1 a k = 1 b k = 1 � � y j cos kx j , y j sin kx j m m j =0 j =0 Then the trigonometric S n ∈ T n defined by n − 1 S n ( x ) = a 0 � 2 + a n cos nx + ( a k cos kx + b k sin kx ) k =1 minimizes the discrete least squares error 2 m − 1 � ( y j − S n ( x j )) 2 E ( a 0 , . . . , a n , b 1 , . . . , b n − 1 ) = j =0 Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 253

  15. Fast Fourier transforms The fast Fourier transform (FFT) employs the Euler formula e z i = cos z + i sin z for all z ∈ R and i = √− 1, and compute the discrete Fourier transform of data to get 2 m − 1 2 m − 1 1 y j e k π i / m k = 0 , . . . , 2 m − 1 � � c k e kx i , where c k = m k =0 j =0 Then one can recover a k , b k ∈ R from a k + i b k = ( − 1) k c k ∈ C m Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 254

  16. Fast Fourier transforms The discrete trigonometric approximation for 2 m data points requires a total of (2 m ) 2 multiplications, not scalable for large m . The cost of FFT is only 3 m + m log 2 m = O ( m log 2 m ) For example, if m = 1024, then (2 m ) 2 ≈ 4 . 2 × 10 6 and 3 m + m log 2 m ≈ 1 . 3 × 10 4 . The larger m is, the more benefit FFT gains. Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 255

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend