advanced algorithms iii
play

Advanced Algorithms (III) Chihao Zhang Shanghai Jiao Tong - PowerPoint PPT Presentation

Advanced Algorithms (III) Chihao Zhang Shanghai Jiao Tong University Mar. 11, 2019 Advanced Algorithms (III) 1/11 Similar to Max2SAT, tossing a fair coin yields an MaxCut MaxCut Input: An undirected graph G V E . Problem: A set S V that


  1. Advanced Algorithms (III) Chihao Zhang Shanghai Jiao Tong University Mar. 11, 2019 Advanced Algorithms (III) 1/11

  2. Similar to Max2SAT, tossing a fair coin yields an MaxCut MaxCut Input: An undirected graph G V E . Problem: A set S V that maximizes E S S . NP -hard -approximation. (Exercise) Can we find clever coins via LP relaxation…? Advanced Algorithms (III) 2/11

  3. Similar to Max2SAT, tossing a fair coin yields an MaxCut MaxCut Advanced Algorithms (III) Can we find clever coins via LP relaxation…? (Exercise) -approximation. NP -hard 2/11 Problem: Input: An undirected graph G = ( V , E ) . � E ( S , ¯ � � A set S ⊆ V that maximizes S ) � .

  4. Similar to Max2SAT, tossing a fair coin yields an MaxCut MaxCut Advanced Algorithms (III) Can we find clever coins via LP relaxation…? (Exercise) -approximation. NP -hard 2/11 Problem: Input: An undirected graph G = ( V , E ) . � E ( S , ¯ � � A set S ⊆ V that maximizes S ) � .

  5. MaxCut MaxCut Advanced Algorithms (III) Can we find clever coins via LP relaxation…? (Exercise) NP -hard 2/11 Problem: Input: An undirected graph G = ( V , E ) . � E ( S , ¯ � � A set S ⊆ V that maximizes S ) � . Similar to Max2SAT, tossing a fair coin yields an 1 2 -approximation.

  6. MaxCut MaxCut Advanced Algorithms (III) Can we find clever coins via LP relaxation…? (Exercise) NP -hard 2/11 Problem: Input: An undirected graph G = ( V , E ) . � E ( S , ¯ � � A set S ⊆ V that maximizes S ) � . Similar to Max2SAT, tossing a fair coin yields an 1 2 -approximation.

  7. E y u v . How to write linear constraints for a cut? Advanced Algorithms (III) subgraph of G . , we view S S F as a bipartite y u v E u v idea: Let F LP for MaxCut introduce a vairable x u u v e The cost function is u v . for every edge e introduce a variable y u v V . for every u 3/11

  8. E y u v . How to write linear constraints for a cut? idea: Let F Advanced Algorithms (III) subgraph of G . , we view S S F as a bipartite y u v E u v LP for MaxCut u v e The cost function is u v . for every edge e introduce a variable y u v 3/11 ▶ introduce a vairable x u ∈ { 0 , 1 } for every u ∈ V .

  9. E y u v . How to write linear constraints for a cut? LP for MaxCut The cost function is e u v idea: Let F u v E y u v , we view S S F as a bipartite subgraph of G . Advanced Algorithms (III) 3/11 ▶ introduce a vairable x u ∈ { 0 , 1 } for every u ∈ V . ▶ introduce a variable y u , v ∈ { 0 , 1 } for every edge e = { u , v } .

  10. LP for MaxCut How to write linear constraints for a cut? idea: Let F u v E y u v , we view S S F as a bipartite subgraph of G . Advanced Algorithms (III) 3/11 ▶ introduce a vairable x u ∈ { 0 , 1 } for every u ∈ V . ▶ introduce a variable y u , v ∈ { 0 , 1 } for every edge e = { u , v } . The cost function is ∑ e = { u , v }∈ E y u , v .

  11. idea: Let F LP for MaxCut u v E y u v , we view S S F as a bipartite subgraph of G . Advanced Algorithms (III) 3/11 ▶ introduce a vairable x u ∈ { 0 , 1 } for every u ∈ V . ▶ introduce a variable y u , v ∈ { 0 , 1 } for every edge e = { u , v } . The cost function is ∑ e = { u , v }∈ E y u , v . How to write linear constraints for a cut?

  12. subgraph of G . LP for MaxCut Advanced Algorithms (III) 3/11 ▶ introduce a vairable x u ∈ { 0 , 1 } for every u ∈ V . ▶ introduce a variable y u , v ∈ { 0 , 1 } for every edge e = { u , v } . The cost function is ∑ e = { u , v }∈ E y u , v . How to write linear constraints for a cut? , we view ( S , ¯ { } idea: Let F = { u , v } ∈ E : y u , v = 1 S , F ) as a bipartite

  13. 4/11 V Advanced Algorithms (III) V u v y v u y u v V u v w y w v y u w y u v u v w y w v y u w y u v s.t. y u v E u v max introduce constraints to rule out odd cycles. introduce constaints for being bipartite graph metric. ▶ introduce y u , v and y v , u for every { u , v } ∈ ( V ) . 2

  14. 4/11 V Advanced Algorithms (III) V u v y v u y u v V u v w y w v y u w y u v u v w y w v y u w y u v s.t. y u v E u v max introduce constraints to rule out odd cycles. ▶ introduce y u , v and y v , u for every { u , v } ∈ ( V ) . 2 ▶ introduce constaints for being bipartite graph metric.

  15. 4/11 V Advanced Algorithms (III) V u v y v u y u v V u v w y w v y u w y u v u v w y w v y u w y u v s.t. y u v E u v max ▶ introduce y u , v and y v , u for every { u , v } ∈ ( V ) . 2 ▶ introduce constaints for being bipartite graph metric. ▶ introduce constraints to rule out odd cycles.

  16. 4/11 V Advanced Algorithms (III) V u v y v u y u v V u v w y w v y u w y u v u v w y w v y u w y u v s.t. max ▶ introduce y u , v and y v , u for every { u , v } ∈ ( V ) . 2 ▶ introduce constaints for being bipartite graph metric. ▶ introduce constraints to rule out odd cycles. ∑ y u , v { u , v }∈ E

  17. 4/11 y u w Advanced Algorithms (III) V u v max y v u y u v V s.t. u v w y w v y u v ▶ introduce y u , v and y v , u for every { u , v } ∈ ( V ) . 2 ▶ introduce constaints for being bipartite graph metric. ▶ introduce constraints to rule out odd cycles. ∑ y u , v { u , v }∈ E y u , v ≤ y u , w + y w , v , ∀ u , v , w ∈ V

  18. 4/11 y u v Advanced Algorithms (III) V u v max y v u y u v V s.t. u v w y w v y u w ▶ introduce y u , v and y v , u for every { u , v } ∈ ( V ) . 2 ▶ introduce constaints for being bipartite graph metric. ▶ introduce constraints to rule out odd cycles. ∑ y u , v { u , v }∈ E y u , v ≤ y u , w + y w , v , ∀ u , v , w ∈ V ∑ y u , v ≤ | C | − 1 , ∀ odd cycle C e = { u , v }∈ C

  19. 4/11 s.t. Advanced Algorithms (III) V u v max y v u y u v ▶ introduce y u , v and y v , u for every { u , v } ∈ ( V ) . 2 ▶ introduce constaints for being bipartite graph metric. ▶ introduce constraints to rule out odd cycles. ∑ y u , v { u , v }∈ E y u , v ≤ y u , w + y w , v , ∀ u , v , w ∈ V y u , v + y u , w + y w , v ≤ 2 , ∀ u , v , w , ∈ V

  20. 4/11 max Advanced Algorithms (III) s.t. ▶ introduce y u , v and y v , u for every { u , v } ∈ ( V ) . 2 ▶ introduce constaints for being bipartite graph metric. ▶ introduce constraints to rule out odd cycles. ∑ y u , v { u , v }∈ E y u , v ≤ y u , w + y w , v , ∀ u , v , w ∈ V y u , v + y u , w + y w , v ≤ 2 , ∀ u , v , w , ∈ V y u , v = y v , u , ∀ u , v ∈ V

  21. 4/11 max Advanced Algorithms (III) s.t. ▶ introduce y u , v and y v , u for every { u , v } ∈ ( V ) . 2 ▶ introduce constaints for being bipartite graph metric. ▶ introduce constraints to rule out odd cycles. ∑ y u , v { u , v }∈ E y u , v ≤ y u , w + y w , v , ∀ u , v , w ∈ V y u , v + y u , w + y w , v ≤ 2 , ∀ u , v , w , ∈ V y u , v = y v , u , ∀ u , v ∈ V y u , v ∈ { 0 , 1 } , ∀ u , v ∈ V

  22. 4/11 max Advanced Algorithms (III) s.t. ▶ introduce y u , v and y v , u for every { u , v } ∈ ( V ) . 2 ▶ introduce constaints for being bipartite graph metric. ▶ introduce constraints to rule out odd cycles. ∑ y u , v { u , v }∈ E y u , v ≤ y u , w + y w , v , ∀ u , v , w ∈ V y u , v + y u , w + y w , v ≤ 2 , ∀ u , v , w , ∈ V y u , v = y v , u , ∀ u , v ∈ V y u , v ∈ [0 , 1] , ∀ u , v ∈ V

  23. Interality Gap Theorem For every , there exists a graph G such that LP G MaxCut G Random graph n p for proper p … Advanced Algorithms (III) 5/11

  24. Interality Gap Theorem Random graph n p for proper p … Advanced Algorithms (III) 5/11 For every ε > 0 , there exists a graph G such that LP ( G ) MaxCut ( G ) ≥ 2 − ε

  25. Interality Gap Theorem Advanced Algorithms (III) 5/11 For every ε > 0 , there exists a graph G such that LP ( G ) MaxCut ( G ) ≥ 2 − ε Random graph G ( n , p ) for proper p …

  26. a ij b ij LP in Matrix Form x Advanced Algorithms (III) i j n B A Hadamard Product y x y x y s.t. max y x max y x y x y x s.t. y x 6/11

  27. a ij b ij LP in Matrix Form y Advanced Algorithms (III) i j n B A Hadamard Product y x y x x max s.t. y x max s.t. 6/11 2 x − 3 y x + y ≤ 2 3 x − y ≤ 1 x ≥ 0 y ≥ 0

  28. a ij b ij LP in Matrix Form s.t. Advanced Algorithms (III) i j n B A Hadamard Product y y y max 6/11 max s.t. [ 2 ] [ x ] 0 0 • 0 − 3 0 − y 2 x − 3 y [ 1 ] [ x ] 0 0 x + y ≤ 2 • ≤ 2 0 1 0 3 x − y ≤ 1 [ 3 ] [ x ] 0 0 • ≤ 1 x ≥ 0 0 − 1 0 y ≥ 0 [ x ] 0 ⪰ 0 0

  29. LP in Matrix Form s.t. Advanced Algorithms (III) Hadamard Product y y y max 6/11 s.t. max [ 2 ] [ x ] 0 0 • 0 − 3 0 − y 2 x − 3 y [ 1 ] [ x ] 0 0 x + y ≤ 2 • ≤ 2 0 1 0 3 x − y ≤ 1 [ 3 ] [ x ] 0 0 • ≤ 1 x ≥ 0 0 − 1 0 y ≥ 0 [ x ] 0 ⪰ 0 0 ∑ A • B ≜ a ij · b ij . 1 ≤ i , j ≤ n

  30. i x Positive Semi-definite Matrix n Advanced Algorithms (III) X m i b i X A i s.t. X C max PSD Programming j Definition x j m i b i a T s.t. c T x max Linear Programming every vector x . We write it as 7/11 An n × n symmetric matrix A is positive semi-definite if x T Ax ≥ 0 for A ⪰ 0 .

  31. Positive Semi-definite Matrix PSD Programming Advanced Algorithms (III) X m i b i X A i s.t. X C max 7/11 Definition a T s.t. c T x max Linear Programming every vector x . We write it as An n × n symmetric matrix A is positive semi-definite if x T Ax ≥ 0 for A ⪰ 0 . ∀ i ∈ [ m ] i x ≤ b i , x j ≥ 0 , ∀ j ∈ [ n ]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend