long term performance assessment of micropiles subject to
play

Long-Term Performance Assessment of Micropiles Subject to Cyclic - PowerPoint PPT Presentation

Long-Term Performance Assessment of Micropiles Subject to Cyclic Axial Loading Gary M. Weinstein ISM 2007 Toronto, Canada September 27, 2007 Summary 1. Problem Definition & Research Needs 2. Model: Creep & Cyclic Displacement 3.


  1. Long-Term Performance Assessment of Micropiles Subject to Cyclic Axial Loading Gary M. Weinstein ISM 2007 Toronto, Canada September 27, 2007

  2. Summary 1. Problem Definition & Research Needs 2. Model: Creep & Cyclic Displacement 3. Model Validation • * Structural Laboratory (New York) • Calibration Chamber (Paris) 4. Conclusions

  3. Industry Applications Railways Bridges & Highways Land-based Arresting Gear (Courtesy of U.S. Navy) Waterfront/Harbor s Power

  4. Cyclic Strain q , δ , n A time- dependent phenomena The effect of number of load cycles on anchor The effect of load cycles displacement for a range of load amplitudes on the rate of anchor displacement (After Al-Mosawe, 1979) (After Al-Mosawe, 1979)

  5. Strain Rate Model for Cyclic Strain q , ε , t d ε dt a c b d . . . d ε = ε = ε o * ε - β + ε res ε (t) =[ ε o ( β +1)]1/ ( β +1) x t 1/ ( β +1) dt The procedure charts including (a) stress, σ , vs. strain, ε , at constant strain rate (b) strain rate vs. strain, ε at constant stress (c) residual strain rate vs. stress, σ and (d) strain, ε , vs. cycle number, n at constant stress

  6. Ecole Nationale des Ponts et Chaussées CERMES CERMES Centre d’ ’Enseignement et de Recherche en M Enseignement et de Recherche en Mé écanique des Sols canique des Sols Centre d

  7. CERMES CERMES Calibration Chamber Chamber Calibration FOREVER (1992-2002) - Physical modeling of micropiles and micropile systems - Controlled testing conditions (stress level, density, etc.) - Monotonic & cyclic loading

  8. 1. Preparation of massif Calibration Chamber Chamber Calibration 2. Implementation of test protocol 3. Initialize data acquisition system 4. Jacking of instrumented pile 5. Loading of micropile Upper base plate � Chambre 6. Demounting massif d’étalonnage Soil Massif Tranche Sand reservoir (plexiglass) élémentaire Lateral d ’un massif avec confinement des Double grill Double cell conditions initiales wall I D, Diffuser reel device σ h et σ v Lower base plate Upper reservoir Vertical confinement Diffuser (double- grill) Micropile Lower reservoir Calibration Chamber - Schematic System of Pluviation

  9. Preassembly of Chamber

  10. Fontainebleau Soil Soil Fontainebleau Gradation Properties St Rémy-lès-Chevreuse ρ s ( g/cm 3 ) ρ d ( g/cm 3 ) ρ dmax ( g/cm 3 ) Sand D 50 (mm) e max e min AF 0.21 0.94 0.54 2.65 1.37 1.72

  11. Massif Massif I(g/cm 2 /s) M s (Kg) I D Test No. Designation 1 MDRC-0 1 2 MDRC-1 225.38 2.72 0.405 0.9 2 - 0.4318x + 0.938 y = 0.0851x 3 MDRC-1b 224.96 2.71 0.396 0.8 2 = 0.9507 R 0.7 4 MDRC-1c 224.06 2.70 0.378 0.6 5 MDRC-3 221.92 2.67 0.335 0.5 I D 6 MDRC-3a 222.96 2.69 0.356 0.4 7 MDRC-3b 224.38 2.70 0.385 0.3 20 tests 0.2 8 CDRC-1 223.96 2.70 0.376 0.1 9 CDRC-2 224.56 2.70 0.388 0 10 CDRC-3 224.24 2.70 0.382 0 1 2 3 11 FDRC-1 223.94 2.70 0.376 I(g/cm2/s) 12 FDRC-2 225.54 2.72 0.408 13 FDRC-2a 223.96 2.70 0.376 Density Index vs. Deposition Intensity 14 FDRC-3 224.22 2.70 0.382 15 FDRC-4 224.64 2.71 0.390 16 FDRC-4a 225.28 2.71 0.403 17 FDRC-5 225.82 2.72 0.414 18 FDRC-6 225.72 2.72 0.412 19 FDRC-8 225.83 2.72 0.414 20 FLC-1 225.52 2.72 0.408 21 FLC-2 225 2.71 0.397 Massif Calibration

  12. Pluviation Pluviation

  13. Application of Vacuum/Counterpressure Counterpressure Application of Vacuum/

  14. Application of Stresses Application of Stresses

  15. Principle Schematic Schematic Principle Jacking piston MTS loading piston Tracks for translation Cell Mobile base - translation and rotation

  16. Jacking & & Loading Loading Jacking Hydraulic jack Single stroke (force transducer) Loading jack (Displacement & force transducer at head) Loading of micropile Jacking of micropile

  17. Instrumented Micropile Micropile Instrumented Measure of friction at the sleeve 200 mm Force transducer 4 kN Instrumented micropile φ 20 mm Force transducer (5kN) – Measure of load at the tip

  18. Test Schedule Test Schedule Test Number Designation Applied Displacement Rate Cyclic Displacement Rate Frequency Rate Q Peak q p Peak f s Peak δ max δ e δ p q p,res f s,res (mm/min) (mm/cycle) (cycle/min) (kN) (MPa) (kPa) (mm) (mm) (mm) (MPa) (kPa) 1 MDRC-0 1 na na 5.06 6.85 68.37 5.13 4.64 4.64 0.88 -0.44 2 MDRC-1 1 na na 4.38 6.26 60.96 59.80 59.80 59.80 1.13 -1.86 3 MDRC-1b 1 na na 4.34 6.58 43.06 24.92 24.92 24.92 0.90 -2.48 4 MDRC-1c 1 na na 4.59 6.31 62.52 24.90 24.90 24.90 0.89 -1.76 5 MDRC-3 0.2 na na 4.14 5.22 54.22 24.91 24.91 24.91 0.75 -0.48 6 MDRC-3a 0.2 na na 5.01 5.98 73.07 19.93 19.93 19.93 0.69 -1.54 7 MDRC-3b 0.2 na na 4.38 5.45 66.03 19.92 19.92 19.92 1.03 -0.63 8 CDRC-1 1 0.2 5 4.84 4.84 75.91 3.58 3.23 3.23 0.57 0.61 9 CDRC-2 0.25 0.05 5 4.61 4.01 86.43 2.49 2.23 2.23 0.56 1.18 10 CDRC-3 0.02 0.004 5 3.40 3.13 0.96 0.78 0.78 0.59 11 FDRC-1 1 1 1 4.69 5.82 67.10 10.98 10.63 10.63 12 FDRC-2 1 0.1 10 4.21 4.50 57.57 9.99 9.72 9.72 0.13 0.18 13 FDRC-2a 1 0.1 10 1.10 1.10 14 FDRC-3 1 0.02 50 3.56 3.89 56.47 10.86 10.66 10.66 15 FDRC-4 1 0.004 250 2.55 2.88 54.95 1.07 0.94 0.94 0.83 0.83 16 FDRC-4a 1 0.004 250 1.20 1.20 17 FDRC-5 1 0.002 500 2.29 2.92 55.34 1.02 0.83 0.83 0.79 0.79 18 FDRC-6 1 0.001 1000 2.04 2.79 51.74 1.00 1.00 1.00 0.22 0.22 19 FDRC-8 1 0.0004 2500 1.87 2.64 47.63 0.53 0.45 0.45 20 FLC-1 1 na na 3.17 4.21 45.07 17.47 17.29 17.29 21 FLC-2 1 na na 1.82 3.05 52.22 0.77 0.67 0.67 Testing Summary 1. Monotonic displacement rate control – Effect of rate 2. Cyclic displacement rate control – Effect of frequency 3. Cyclic load control – Validation of testing methodology & model Establishment of Critical Cyclic Load

  19. Test Control & Data Acquisition Test Control & Data Acquisition Mission Control LABView Environment MTS FlexTest System

  20. Repeatibility & Rate & Rate Effects Effects Repeatibility 4 FDRC-1 FDRC-2 3 Force (kN) FDRC-3 2 FDRC-4 FDRC-5 1 FDRC-6 FDRC-8 0 0 100 200 300 400 500 600 Displacement of the Point (mm) Jacking 5 4.5 4 3.5 Force (kN) 3 2.5 2 1.5 1 0.5 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Displacement (mm) ADR = 1mm/min (MDRC-1) ADR = 0.02mm/min (MDRC-3) ADR = 1mm/min (MDRC-1c) ADR = 0.02mm/min (MDRC-3b) Loading

  21. Initial Stiffness Stiffness (Rate (Rate Effects Effects) ) Initial 6 5 4 Force (kN) 3 1mm/min. 2 0.1mm/min. 1 0.01mm/min. 0 0 1 2 3 4 5 6 7 Displacement (mm) 6 y = 10.416x + 0.8116 1mm/min. 5 R 2 = 0.9915 0.1mm/min. Force (kN) 4 0.01mm/min. y = 10.374x + 0.2936 3 R 2 = 0.9982 2 y = 8.144x - 0.0338 1 R 2 = 0.9986 0 0 0.1 0.2 0.3 Relative Displacement (mm) Loading

  22. Cyclic Displacement Displacement Rate Control Rate Control Cyclic 5 100 7 90 4 6 Tip Resistance (MPa) Sleeve Friction (kPa) 80 Force (kN) 5 70 3 60 4 50 2 3 40 30 1 2 20 1 10 0 0 0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 Displacement (mm) Displacement (mm) Displacement (mm) MDRC-1c (ADR = 1.0 mm/min) MDRC-1c (ADR = 1.0 mm/min) MDRC-1c (ADR = 1.0 mm/min) CDRC-1 (ADR = 1.0 mm/min; CDR = 0.20 mm/cycle; F = 5 cpm; N =18 cycles CDRC-1 (ADR = 1.0 mm/min; CDR = 0.20 mm/cycle; F = 5 cpm; N =18 cycles CDRC-1 (ADR = 1.0 mm/min; CDR = 0.20 mm/cycle; F = 5 cpm; N =18 cycles CDRC-2 (ADR = 0.25mm/min; CDR = 0.05 mm/cycle; F = 5 cpm; N = 50 cycles CDRC-2 (ADR = 0.25mm/min; CDR = 0.05 mm/cycle; F = 5 cpm; N = 50 cycles CDRC-2 (ADR = 0.25mm/min; CDR = 0.05 mm/cycle; F = 5 cpm; N = 50 cycles Variable Applied Applied Displacement Displacement Rate Rate Variable

  23. Cyclic Displacement Displacement Rate Control Rate Control Cyclic 7 80 5 6 75 Tip Resistance (MPa) 70 Sleeve Friction (kPa) 65 5 4 60 55 4 50 Force (kN) 3 45 3 40 35 30 2 2 25 20 1 15 1 10 0 5 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 Displacement (mm) 0 1 2 3 4 5 6 7 8 9 10 Displacement (mm) Displacement (mm) MDRC-1c (ADR = 1 mm/min) MDRC-1c (ADR = 1 mm/min) FDRC-1 (ADR = 1 mm/min; CDR = 1 mm/cycle; F = 1 cpm; N = 11 cycles) MDRC-1c (ADR = 1 mm/min) FDRC-2 (ADR = 1 mm/min; CDR = 0.1 mm/cycle; F = 10 cpm; N = 100 cycles) FDRC-1 (ADR = 1 mm/min; CDR = 1 mm/cycle; F = 1 cpm; N = 11 cycles) FDRC-1 (ADR = 1 mm/min; CDR = 1 mm/cycle; F = 1 cpm; N = 11 cycles) FDRC-2 (ADR = 1 mm/min; CDR = 0.1 mm/cycle; F = 10 cpm; N = 100 cycles) FDRC-3 (ADR = 1 mm/min; CDR = 0.02 mm/cycle; F = 50 cpm N = 58 cycles) FDRC-2 (ADR = 1 mm/min; CDR = 0.1 mm/cycle; F = 10 cpm; N = 100 cycles) FDRC-3 (ADR = 1 mm/min; CDR = 0.02 mm/cycle; F = 50 cpm N = 58 cycles) FDRC-3 (ADR = 1 mm/min; CDR = 0.02 mm/cycle; F = 50 cpm N = 58 cycles) Variable Cyclic Cyclic Displacement Displacement Rate Rate Variable

  24. Cyclic Displacement Displacement Rate Control Rate Control Cyclic Force vs. Displacement Displacement Force vs. Force vs. Displacement Displacement ( (cyclic cyclic envelope envelope) ) Force vs.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend