lighter element primary process in neutrino driven winds
play

Lighter element primary process in neutrino-driven winds Almudena - PowerPoint PPT Presentation

Lighter element primary process in neutrino-driven winds Almudena Arcones Helmholtz Young Investigator Group Neutrino-driven winds Neutrino Cooling and Neutrino R [km] neutrons and protons form alpha particles Driven Wind (t ~ 10s) 5


  1. Lighter element primary process in neutrino-driven winds Almudena Arcones Helmholtz Young Investigator Group

  2. Neutrino-driven winds Neutrino Cooling and Neutrino − R [km] neutrons and protons form alpha particles Driven Wind (t ~ 10s) 5 10 alpha particles recombine into seed nuclei ν , ν 4 e ,µ, τ e ,µ, τ 10 Ni 3 10 Si He α 2 10 r − process? ν , ν e ,µ, τ e ,µ, τ O R ~ 10 R ~ 10 ns ns R R ν ν M(r) [M ] α , n α , n 1.4 3 PNS PNS 1.4 9 Be, α ,n, n, p n, p 12 C, seed NSE → charged particle reactions / α -process → r-process weak r-process T = 10 - 8 GK 8 - 2 GK ν p-process T < 3 GK

  3. Neutrino-driven wind parameters r-process ⇒ high neutron-to-seed ratio (Y n /Y seed ~100) - Short expansion time scale to inhibit α -process and formation of seed nuclei - High entropy is equivalent to high photon-to-baryon ratio: photons dissociate seed nuclei into nucleons - Electron fraction: Y e <0.5 Shock Stagnation and Heating, R [km] Neutrino Cooling and Neutrino − Driven Wind (t ~ 10s) 5 10 => ! NSE $%G ν , ν 4 e ,µ, τ e ,µ, τ 10 => ()# high entropy Ni 3 10 Si O P, low entropy He α 2 > 10 r − process? ν , ν e ,µ, τ e ,µ, τ ,µ, τ O QR 3' R ~ 10 R ~ 10 ns ns R R : ν ν M(r) [M ] α , n α , n PNS 1.4 1.4 3 PNS > => 9 Be, ? α ,n, n, p n, p 12 C, seed Entropy per baryon in relativistic gas: Photon-to-baryon ratio: s ∝ (kT 3 ) / ( ρ N A ) ⇒ s = 10/ Φ Φ = n γ / ( ρ N A ) ∝ (kT 3 ) / ( ρ N A )

  4. Wind and r-process Meyer et al. 1992 and Woosley et al. 1994: r-process: high entropy and low Y e Witti et al., Takahasi et al. 1994 needed factor 5.5 increased in entropy Qian & Woosley 1996: analytic model Thompson, Otsuki, Wanajo, ... (2000-...) parametric steady state winds

  5. Electron fraction depends on accuracy of supernova neutrino transport and on details of neutrino interactions in outer layers of neutron star. Qian & Woosley 1996 ( Δ =m n -m p ) The neutrino energies are determined by the position (temperature) where neutrinos decouple from matter: neutrinosphere R ν R ν Raffelt 2001 radius

  6. Electron fraction depends on accuracy of supernova neutrino transport and on details of neutrino interactions in outer layers of neutron star. Qian & Woosley 1996 ( Δ =m n -m p ) Y e < 0.5 if The neutrino energies are determined by the position (temperature) where neutrinos Woosley et al 1994 decouple from matter: neutrinosphere Arcones et al 2007 R ν R ν Raffelt 2001 Hüdepohl et al 2010 Lea/Len = 1 Fischer et al 2010 Lea/Len = 1.1 radius

  7. April 2012 no mean field effects GM3 IU-FSU

  8. Wind parameters and r-process Necessary conditions identified by steady-state models (e.g., Otsuki et al. 2000, Thompson et al. 2001) Otsuki et al. 2000 Ye=0.45 1 0 1 0 2 = Y seed 0 5 / Y n 100 150 250 Conditions are not realized in recent simulations (Arcones et al. 2007, Fischer et al. 2010, Hüdepohl et al. 2010, Roberts et al. 2010, Arcones & Janka 2011) S wind = 50 - 120 k B /nuc τ = few ms Y e > 0.5? Additional ingredients: wind termination, extra energy source, rotation and magnetic fields, neutrino oscillations Review: Arcones & Thielemann (arxiv: 1207.2527)

  9. Core-collapse supernova simulations Hot bubble Shock Proto-neutron star Long-time hydrodynamical simulations: - ejecta evolution from ~5ms after bounce to ~3s in 2D (Arcones & Janka 2011) and ~10s in 1D (Arcones et al. 2007) - explosion triggered by neutrinos - detailed study of nucleosynthesis-relevant conditions

  10. Neutrino-driven wind in 2D Supersonic neutrino-driven wind k c o collides with slow supernova ejecta: h s reverse shock slow ejecta k reverse shock c o h s neutrino-driven wind

  11. Arcones & Janka (2011)

  12. Neutrino-driven wind in 2D and 1D Spherically symmetric wind different T of the shocked matter

  13. 1D simulations for nucleosynthesis studies Arcones et al 2007 Radius [cm] ❒ mass element Shock Reverse shock Neutron star time [s]

  14. 1D simulations for nucleosynthesis studies Arcones et al 2007 Silver no r-process Radius [cm] ❒ mass element Shock Reverse shock Neutron star time [s]

  15. r-process in ultra metal-poor stars Silver Eu Gold Abundances of r-process elements in: - ultra metal-poor stars and - r-process solar system: N solar - N s Robust r-process for 56<Z<83 Scatter for lighter heavy elements, Z~40 log( ε (E)) = log(N E /N H ) + 12 Sneden, Cowan, Gallino 2008 The very metal-deficient star HE 0107-5240 (Hamburg-ESO survey)

  16. LEPP: Lighter Element Primary Process Ultra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: two components or sites (Qian & Wasserburg): stellar LEPP heavy r-process Travaglio et al. 2004: solar = r-process + s-process + solar LEPP LEPP contributes 20-30% of solar Sr-Y-Zr and explains under-productions of “s-only” isotopes from 96 Mo to 130 Xe Montes et al. 2007: solar LEPP ~ stellar LEPP → unique?

  17. LEPP: Lighter Element Primary Process Ultra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: two components or sites (Qian & Wasserburg): stellar LEPP 1e+01 heavy r-process HD122563 r-II average � Solar s p r-II average � � � 1e+00 Abundance 1e-01 1e-02 1e-03 Montes et al. 2007 1e-04 40 70 35 45 50 55 60 65 Z Travaglio et al. 2004: solar = r-process + s-process + solar LEPP LEPP contributes 20-30% of solar Sr-Y-Zr and explains under-productions of “s-only” isotopes from 96 Mo to 130 Xe Montes et al. 2007: solar LEPP ~ stellar LEPP → unique?

  18. (Arcones & Montes, 2011) LEPP in neutrino-driven winds Integrated abundances for different progenitors Massive progenitors: higher entropy ⇒ heavier nuclei Simplified neutrino transport: approximated Y e Impact of Y e on wind nucleosynthesis: - r-process only for extreme low Y e - LEPP in neutron- and proton-rich conditions

  19. Wind nucleosynthesis and Y e Initial composition is given by NSE, at high temperatures only n, p and alphas. T = 8 GK

  20. Wind nucleosynthesis and Y e Alpha particles recombine forming seed nuclei. T = 8 GK T = 5 GK

  21. Wind nucleosynthesis and Y e At freeze-out neutron- and proton-to-seed ratio determine production of heavy elements. T = 8 GK T = 5 GK T = 2 GK neutrons produced by the ν p-process (Fröhlich et al. 2006, Pruet et al. 2006, Wanajo et al. 2006)

  22. ν p-process Z stable nuclei 64 Ge (p, ϒ ) (n,p) β -decay too slow neutrons produced by antineutrino absorption on protons (Fröhlich et al. 2006, Pruet et al. 2006, Wanajo et al. 2006) N

  23. ν p-process Wind termination impact: T>3GK matter stays in the NiCu cycle T=2GK heavier elements produced T<1GK too fast expansion for neutrinos to produce enough neutrons Z Arcones, Föhlich, Martinez-Pinedo (2012) Wanajo et al. (2011) N

  24. ν p-process Wind termination impact: T>3GK matter stays in the NiCu cycle T=2GK heavier elements produced T<1GK too fast expansion for neutrinos to produce enough neutrons Z Arcones, Föhlich, Martinez-Pinedo (2012) Wanajo et al. (2011) N

  25. Lighter heavy elements in neutrino-driven winds Can the LEPP pattern be produced based on neutrino-driven wind simulations? Which nuclear process is the LEPP? Charged-particle reactions (Qian & Wasserburg 2001) ν p-process weak r-process neutron rich proton rich observations Observation pattern can be reproduced! Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: Production of p-nuclei only a fraction of neutron-rich ejecta (Arcones & Montes, 2011)

  26. Lighter heavy elements in neutrino-driven winds Can the LEPP pattern be produced based on neutrino-driven wind simulations? Which nuclear process is the LEPP? Charged-particle reactions (Qian & Wasserburg 2001) ν p-process weak r-process neutron rich proton rich observations Observation pattern can be reproduced! Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: Production of p-nuclei only a fraction of neutron-rich ejecta (Arcones & Montes, 2011)

  27. Conclusion LEPP pattern can be produced based on neutrino-driven wind simulations neutron rich proton rich observations LEPP = charged-particle reactions + ν p-process weak r-process Observations and better constraints on Y e are required Other possible LEPP sites: super-AGB stars at low Z (Herwig et al. 2011) ; fast rotating massive stars (Frischknecht et al. 2011)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend