lecture no 5
play

Lecture no: 5 Digital modulation Ove Edfors, Department of - PowerPoint PPT Presentation

RADIO SYSTEMS ETIN15 Lecture no: 5 Digital modulation Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2011-03-28 Ove Edfors - ETIN15 1 Contents Brief overview of a wireless communication link


  1. RADIO SYSTEMS – ETIN15 Lecture no: 5 Digital modulation Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2011-03-28 Ove Edfors - ETIN15 1

  2. Contents • Brief overview of a wireless communication link • Radio signals and complex notation (again) • Modulation basics • Important modulation formats 2012-03-26 Ove Edfors - ETIN15 2

  3. STRUCTURE OF A WIRELESS COMMUNICATION LINK 2012-03-26 Ove Edfors - ETIN15 3

  4. A simple structure Speech Speech Chann. A/D Encrypt. Modulation encoder encoding Data Key Speech Speech Chann. D/A Decrypt. Demod. decoder decoding Data (Read Chapter 10 for more details) 2012-03-26 Ove Edfors - ETIN15 4

  5. RADIO SIGNALS AND COMPLEX NOTATION (from Lecture 3) 2012-03-26 Ove Edfors - ETIN15 5

  6. Simple model of a radio signal • A transmitted radio signal can be written ( ) ( ) = π + φ s t A cos 2 ft Amplitude Frequency Phase • By letting the transmitted information change the amplitude, the frequency, or the phase, we get the tree basic types of digital modulation techniques – ASK (Amplitude Shift Keying) – FSK (Frequency Shift Keying) Constant amplitude – PSK (Phase Shift Keying) 2012-03-26 Ove Edfors - ETIN15 6

  7. The IQ modulator ( ) s t I I-channel ( ) Transmited radio signal (in-phase) π cos 2 f t c ( ) ( ) ( ) = π f s t s t cos 2 f t c I c ( ) ( ) − π s t sin 2 f t Q c o -90 ( ) − π ( ) sin 2 f t s t c Q Q-channel (quadrature) Take a step into the complex domain: s  t = s I  t  j s Q  t   Complex envelope s  t = Re {  j 2  f c t } s  t  e π j 2 f t e Carrier factor c 2012-03-26 Ove Edfors - ETIN15 7

  8. Interpreting the complex notation Complex envelope (phasor) Transmitted radio signal Q ( ) s  t  s t  Re {  j 2  f c t } Q s  t  = s  t  e ( ) ( ) A t φ t Re { A  t  e j 2  f c t } j  t  e = ( ) s t I Re { A  t  e j  2  f c t  t  } = I = A  t  cos  2  f c t  t  Polar coordinates: By manipulating the amplitude A (t) j  t  s  t = s I  t  j s Q  t = A  t  e  and the phase Φ (t) of the complex envelope (phasor), we can create any type of modulation/radio signal. 2012-03-26 Ove Edfors - ETIN15 8

  9. Example: Amplitude, phase and frequency modulation ( ) ( ) ( ) ( ) = π + φ s t A t cos 2 f t t c ( ) ( ) φ A t t Comment: 00 01 11 00 10 - Amplitude carries information 4ASK - Phase constant (arbitrary) 00 01 11 00 10 - Amplitude constant (arbitrary) 4PSK - Phase carries information 00 01 11 00 10 - Amplitude constant (arbitrary) - Phase slope (frequency) 4FSK carries information 2012-03-26 Ove Edfors - ETIN15 9

  10. MODULATION BASICS 2012-03-26 Ove Edfors - ETIN15 10

  11. Pulse amplitude modulation (PAM) The modulation process Complex domain Bits Radio ( ) b c s t signal m m LP Mapping PAM Re{ } ( ) π exp j 2 f t Complex c numbers Symbol ∞ Many possible pulses s LP  t = ∑ c m g  t − mT s  time ( ) PAM: g t m =−∞ “Standard” basis pulse criteria t ∞ ( ) ∫ 2 dt = 1 or = T s g t ∣ g  t  ∣ (energy norm.) −∞ ∞ ∫ *  t − mT s  dt = 0 for m ≠ 0 (orthogonality) g  t  g t T −∞ s 2012-03-26 Ove Edfors - ETIN15 11

  12. Pulse amplitude modulation (PAM) Basis pulses and spectrum Assuming that the complex numbers c m representing the data are independent, then the power spectral density of the base band PAM signal becomes: S LP  f ~ ∣ ∫ − j 2  f t dt ∣ ∞ 2 g  t  e −∞ which translates into a radio signal (band pass) with 1 ( ) ( ) ( ) ( ) = − + − − S f S f f S f f BP LP c LP c 2 2012-03-26 Ove Edfors - ETIN15 12

  13. Pulse amplitude modulation (PAM) Basis pulses and spectrum Illustration of power spectral density of the (complex) base-band signal, S LP ( f ), and the (real) radio signal, S BP ( f ). ( ) ( ) S f S f LP BP − f f f f c c Can be asymmetric, since it is a complex Symmetry (real radio signal) signal. What we need are basis pulses g ( t ) with nice properties like: - Narrow spectrum (low side-lobes) - Relatively short in time (low delay) 2012-03-26 Ove Edfors - ETIN15 13

  14. Pulse amplitude modulation (PAM) Basis pulses TIME DOMAIN FREQ. DOMAIN Rectangular [in time] Normalized time / t T Normalized freq. f × T s s (Root-) Raised-cosine [in freq.] Normalized freq. f × T s Normalized time / t T s 2012-03-26 Ove Edfors - ETIN15 14

  15. Pulse amplitude modulation (PAM) Interpretation as IQ-modulator For real valued basis functions g ( t ) we can view PAM as: ( ) ( ) ( ) = s t Re s t I LP ( ) Re c m ( ) g t ( ) π cos 2 f t c Radio Pulse b c f signal c m m Mapping shaping filters o -90 ( ) − π sin 2 f t c ( ) g t ( ) Im c m ( ) ( ) ( ) = s t Im s t Q LP (Both the rectangular and the (root-) raised-cosine pulses are real valued.) 2012-03-26 Ove Edfors - ETIN15 15

  16. Multi-PAM Modulation with multiple pulses Complex domain Bits Radio ( ) b c s t signal m m LP Mapping multi-PAM Re{ } ( ) π exp j 2 f t c ∞ s LP  t = ∑ g c m  t − mT s  multi-PAM: m −∞ “Standard” basis pulse criteria Several ∫ ∣ g c m  t  ∣ 2 dt = 1 or = T s different (energy norm.) *  t − kT s  dt = 0 for k ≠ 0 pulses ∫ g c m  t  g c m (orthogonality) *  t  dt = 0 for c m ≠ c n ∫ g c m  t  g c n (orthogonality) 2012-03-26 Ove Edfors - ETIN15 16

  17. Multi-PAM Modulation with multiple pulses Frequency-shift keying (FSK) with M (even) different transmission frequencies can be interpreted as multi-PAM if the basis functions are chosen as: − j  k  f t for 0 ≤ t ≤ T s g k  t = e and for k = +/- 1, +/- 3, ... , +/- M/2 S LP  f  S BP  f  − f f c c ∆ f Bits: 00 01 10 11 2012-03-26 Ove Edfors - ETIN15 17

  18. Continuous-phase FSK (CPFSK) The modulation process Complex domain Bits Radio ( ) b c s t signal m m LP Mapping CPFSK Re{ } ( ) π exp j 2 f t c s LP  t = A exp  j  CPFSK  t   CPFSK: where the amplitude A is constant and the phase is t ∞  CPFSK  t = 2  h mod ∑ c m ∫ g  u − mT  du  m =−∞ −∞ Phase basis where h mod is the modulation index. pulse 2012-03-26 Ove Edfors - ETIN15 18

  19. Continuous-phase FSK (CPFSK) The Gaussian phase basis pulse In addition to the rectangular phase basis pulse, the Gaussian is the most common. BT s =0.5 Normalized time / t T s 2012-03-26 Ove Edfors - ETIN15 19

  20. IMPORTANT MODULATION FORMATS 2012-03-26 Ove Edfors - ETIN15 20

  21. Binary phase-shift keying (BPSK) Rectangular pulses Base-band Radio signal 2012-03-26 Ove Edfors - ETIN15 21

  22. Binary phase-shift keying (BPSK) Rectangular pulses Complex representation Signal constellation diagram 2012-03-26 Ove Edfors - ETIN15 22

  23. Binary phase-shift keying (BPSK) Rectangular pulses Power spectral density for BPSK Normalized freq. f × T b 2012-03-26 Ove Edfors - ETIN15 23

  24. Binary phase-shift keying (BPSK) Raised-cosine pulses (roll-off 0.5) Base-band Radio signal 2012-03-26 Ove Edfors - ETIN15 24

  25. Binary phase-shift keying (BPSK) Raised-cosine pulses (roll-off 0.5) Complex representation Signal constellation diagram 2012-03-26 Ove Edfors - ETIN15 25

  26. Binary phase-shift keying (BPSK) Raised-cosine pulses (roll-off 0.5) Power spectral density for BAM Normalized freq. f × T b Much higher spectral efficiency than BPSK (with rectangular pulses). 2012-03-26 Ove Edfors - ETIN15 26

  27. Quaternary PSK (QPSK or 4-PSK) Rectangular pulses Complex representation Radio signal 2012-03-26 Ove Edfors - ETIN15 27

  28. Quaternary PSK (QPSK or 4-PSK) Rectangular pulses Power spectral density for QPSK Twice the spectrum efficiency of BPSK (with rect. pulses). TWO bits/pulse instead of one. 2012-03-26 Ove Edfors - ETIN15 28

  29. Quadrature ampl.-modulation (QAM) Root raised-cos pulses (roll-off 0.5) Complex representation Much higher spectral efficiency than QPSK (with rectangular pulses). 2012-03-26 Ove Edfors - ETIN15 29

  30. Amplitude variations The problem Signals with high amplitude variations leads to less efficient amplifiers. Complex representation of QPSK It is a problem that the signal passes through the origin, where the amplitude is ZERO. (Infinite amplitude variation.) Can we solve this problem in a simple way? 2012-03-26 Ove Edfors - ETIN15 30

  31. Amplitude variations A solution Let’s rotate the signal constellation diagram for each transmitted symbol! / 4 2 ×/ 4 etc. 2012-03-26 Ove Edfors - ETIN15 31

  32. Amplitude variations A solution Looking at the complex representation ... QPSK without rotation QPSK with rotation A “hole” is created in the center. No close to zero amplitudes. 2012-03-26 Ove Edfors - ETIN15 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend